1
|
Souza da Silva R, Schmitt F. Minimally Invasive, Maximally Effective: The Power of Precision Cytoanalysis on Effusion Samples-A Comprehensive Exploration from Traditional Methods to Innovative Approaches. Surg Pathol Clin 2024; 17:453-481. [PMID: 39129143 DOI: 10.1016/j.path.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Precision medicine translates through molecular assays and in minimally invasive diagnosis, evident in analyses of effusions that serve therapeutic and diagnostic purposes. This cost-effective and low-risk approach provides advantages, playing a pivotal role in late-stage oncology and frequently standing as the primary resource for cancer diagnosis and treatment pathways. This article outlines the workflow for managing serous fluid and explores how cytology effusion analysis extends beyond immunocytological diagnosis. Combined with current molecular tests it showcases the potential to be a skillful tool in precision cytopathology.
Collapse
Affiliation(s)
- Ricella Souza da Silva
- IPATIMUP Diagnostics, IPATIMUP-Institute of Molecular Pathology and Immunology of Porto University, Porto, 4200-135, Portugal
| | - Fernando Schmitt
- IPATIMUP Diagnostics, IPATIMUP-Institute of Molecular Pathology and Immunology of Porto University, Porto, 4200-135, Portugal; Faculty of Medicine of the University of Porto, Porto, 4200-319, Portugal; CINTESIS@RISE (Health Research Network), Porto, 4200-319, Portugal.
| |
Collapse
|
2
|
Thakur S, Rathor A, Jain S, Nambirajan A, Khurana S, Malik PS, Jain D. Pleural effusion supernatant: a reliable resource for cell-free DNA in molecular testing of lung cancer. J Am Soc Cytopathol 2024; 13:291-302. [PMID: 38704351 DOI: 10.1016/j.jasc.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 05/06/2024]
Abstract
INTRODUCTION DNA extracted from malignant pleural effusion (PE) sediments is the traditional source of tumor DNA for predictive biomarker molecular testing (MT). Few recent studies have proposed the utility of cell-free DNA (cfDNA) extracted from effusion cytology centrifuged supernatants (CCS) in MT. The aim of this study was to assess the feasibility and utility of molecular testing on cfDNA extracted from PE CCS in lung cancer patients. MATERIALS AND METHODS The study was of prospective design. All PE CCS were collected and stored. Subsequently, in patients confirmed as primary lung adenocarcinoma (LUAD) and where patient matched effusion sediment/tissue biopsy/plasma was being tested for EGFR mutations, cfDNA extraction and EGFR MT by real-time polymerase chain reaction (qPCR) were performed. Custom panel targeted next-generation sequencing (NGS) (Ion Torrent; Thermo Fisher, Carlsbad, CA) was also performed wherever feasible. RESULTS Out of 299 PE CCS collected, 20 CCS samples were included in the study. Concordant EGFR mutations were detected in pleural effusion CCS of 10 of 11 (91%) EGFR mutant cases as per qPCR performed on the matched sediment DNA (n = 8), lung biopsy (n = 2), and plasma (n = 1) samples. In 1 positive sample, CCS detected additional EGFR T790M mutation. Among 10 CCS samples also tested by NGS, additional EGFR mutations missed by qPCR were picked up in 2 (2 of 10). Success of mutation detection in CCS cfDNA did not correlate with cfDNA quantity or tumor fraction in sediment. CONCLUSIONS cfDNA from effusion CCS is a reliable and independent source of tumor DNA highly amenable for MT and complement results from other tumor DNA sources for comprehensive mutation profiling in LUAD patients.
Collapse
Affiliation(s)
- Shilpi Thakur
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Amber Rathor
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Surabhi Jain
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Aruna Nambirajan
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Sachin Khurana
- Department of Medical Oncology, Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Prabhat Singh Malik
- Department of Medical Oncology, Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Deepali Jain
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
3
|
Das D, Avssn R, Chittela RK. A phenol-chloroform free method for cfDNA isolation from cell conditioned media: development, optimization and comparative analysis. Anal Biochem 2024; 687:115454. [PMID: 38158107 DOI: 10.1016/j.ab.2023.115454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The non-invasive invasive nature of cell-free DNA (cfDNA) as diagnostic, prognostic, and theragnostic biomarkers has gained immense popularity in recent years. The clinical utility of cfDNA biomarkers may depend on understanding their origin and biological significance. Apoptosis, necrosis, and/or active release are possible mechanisms of cellular DNA release into the cell-free milieu. In-vitro cell culture models can provide useful insights into cfDNA biology. The yields and quality of cfDNA in the cell conditioned media (CCM) are largely dependent on the extraction method used. Here, we developed a phenol-chloroform-free cfDNA extraction method from CCM and compared it with three others published cfDNA extraction methods and four commercially available kits. Real-Time PCR (qPCR) targeting two different loci and a fluorescence-based Qubit assay were performed to quantify the extracted cfDNA. The absolute concentration of the extracted cfDNA varies with the target used for the qPCR assay; however, the relative trend remains similar for both qPCR assays. The cfDNA yield from CCM provided by the developed method was found to be either higher or comparable to the other methods used. In conclusion, we developed a safe, rapid and cost-effective cfDNA extraction protocol with minimal hands-on time; with no compromise in cfDNA yields.
Collapse
Affiliation(s)
- Dhruv Das
- Applied Genomics Section, Bioscience Group, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute (HBNI), Anushaktinagar, Trombay, Mumbai, 400094, India
| | - Rao Avssn
- Applied Genomics Section, Bioscience Group, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Rajani Kant Chittela
- Applied Genomics Section, Bioscience Group, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute (HBNI), Anushaktinagar, Trombay, Mumbai, 400094, India.
| |
Collapse
|
4
|
Vukovic M, Tanic M, Damjanovic A, Pavlovic M, Stanojevic A, Zivic K, Karadzic V, Jankovic R, Cavic M. EGFR mutation testing from pleural effusions of non-small cell lung cancer patients at the institute for oncology and radiology of Serbia. Transl Oncol 2023; 37:101772. [PMID: 37659221 PMCID: PMC10495676 DOI: 10.1016/j.tranon.2023.101772] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 08/14/2023] [Accepted: 08/24/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND The use tumor-derived cell-free DNA extracted from body fluids is being evaluated for genetic testing in lung cancer. The aim of this study was to explore the feasibility and utility of implementation of EGFR molecular testing from pleural effusions in non-small cell lung cancer in the clinical diagnostics workflow. PATIENTS AND METHODS This study included patients diagnosed with primary lung adenocarcinoma in the period July 2016 to June 2023. EGFR mutation testing was performed by qPCR (Cobas®) and dPCR. Testing was performed from 211 plasma samples when tissue was unavailable at diagnosis, and from 301 plasma samples and 18 pleural effusions at progression on first/second generation of EGFR TKIs. Descriptive methods of statistical analysis were used to summarize the sample data. Fisher's exact test, McNemar's test, Cohen's kappa tests were used for statistical analyses. Two-sided p-values <0.05 were considered statistically significant. RESULTS A significantly higher detection rate of the T790M mutation in pleural effusion was obtained compared to blood (50% and 20%, p=0.047). When comparing the detection success rate of the resistant T790M mutation in pleural effusion and blood, a statistically significant difference was obtained in favor of pleural effusion (50% vs. 21.87%, p=0.01). CONCLUSIONS Superior performance of pleural effusions compared to blood plasma was shown both in the analysis of success rate and in the detection of the resistant T790M mutation, at progression on EGFR TKIs. Pleural effusion should be considered in this setting whenever available, especially in countries with limited health resources.
Collapse
Affiliation(s)
- Miodrag Vukovic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, Belgrade 11000, Serbia
| | - Miljana Tanic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, Belgrade 11000, Serbia
| | - Ana Damjanovic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, Belgrade 11000, Serbia
| | - Marijana Pavlovic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, Belgrade 11000, Serbia
| | - Aleksandra Stanojevic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, Belgrade 11000, Serbia
| | - Katarina Zivic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, Belgrade 11000, Serbia
| | - Valentina Karadzic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, Belgrade 11000, Serbia
| | - Radmila Jankovic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, Belgrade 11000, Serbia
| | - Milena Cavic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, Belgrade 11000, Serbia.
| |
Collapse
|
5
|
Mahmood K, Jampani P, Clarke JM, Wolf S, Wang X, Wahidi MM, Giovacchini CX, Dorry M, Shofer SL, Shier J, Jones G, Antonia SJ, Nixon AB. High Yield of Pleural Cell-Free DNA for Diagnosis of Oncogenic Mutations in Lung Adenocarcinoma. Chest 2023; 164:252-261. [PMID: 36693563 PMCID: PMC10331627 DOI: 10.1016/j.chest.2023.01.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Pleural cytology is currently used to assess targetable mutations in patients with advanced lung adenocarcinoma. However, it is fraught with low diagnostic yield. RESEARCH QUESTION Can pleural cell-free DNA (cfDNA) be used to assess targetable mutations in lung adenocarcinoma patients with malignant pleural effusions (MPE)? STUDY DESIGN AND METHODS Patients with lung adenocarcinoma MPE were recruited prospectively between January 2017 and September 2021. Oncogenic mutations were assessed by treating providers using pleural fluid cytology or lung cancer biopsies. Pleural and plasma cfDNA were used to assess the mutations using next-generation sequencing (NGS). RESULTS Fifty-four pleural fluid samples were collected from 42 patients. The diagnostic yield to detect oncogenic mutations for pleural cfDNA, pleural cytology, biopsy, and plasma cfDNA was 49/54 (90.7%), 16/33 (48.5%), 22/25 (88%), and 24/32 (75%), respectively, P < .001. The agreement of mutations in positive samples between pleural cfDNA and pleural cytology was 100%, whereas the agreement of pleural cfDNA with biopsies was 89.4%. The median concentration (interquartile range) of pleural cfDNA was higher than plasma: 28,444 (4,957-67,051) vs 2,966.5 (2,167-5,025) copies of amplifiable DNA per mL, P < .01. Median of 5 mL (interquartile range, 4.5-5) of pleural fluid supernatant was adequate for cfDNA testing. INTERPRETATION The diagnostic yield of pleural cfDNA NGS for oncogenic mutations in lung adenocarcinoma patients is comparable to tumor biopsies and higher than pleural cytology and plasma cfDNA. The pleural cfDNA can be longitudinally collected, can be readily incorporated in clinical workflow, and may decrease the need for additional biopsies.
Collapse
Affiliation(s)
- Kamran Mahmood
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Duke University, Durham, NC.
| | - Parvathi Jampani
- Department of Medicine, Division of Medical Oncology, Duke University, Durham, NC
| | - Jeffrey M Clarke
- Department of Medicine, Division of Medical Oncology, Duke University, Durham, NC
| | - Steven Wolf
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC
| | - Xiaofei Wang
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC
| | - Momen M Wahidi
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Duke University, Durham, NC
| | - Coral X Giovacchini
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Duke University, Durham, NC
| | - Michael Dorry
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Duke University, Durham, NC
| | - Scott L Shofer
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Duke University, Durham, NC
| | - Jessica Shier
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Duke University, Durham, NC
| | | | - Scott J Antonia
- Department of Medicine, Division of Medical Oncology, Duke University, Durham, NC
| | - Andrew B Nixon
- Department of Medicine, Division of Medical Oncology, Duke University, Durham, NC
| |
Collapse
|
6
|
Transcending Blood—Opportunities for Alternate Liquid Biopsies in Oncology. Cancers (Basel) 2022; 14:cancers14051309. [PMID: 35267615 PMCID: PMC8909855 DOI: 10.3390/cancers14051309] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Cell-free DNA—DNA that has been expelled from cells and can be isolated from blood plasma and other body fluids—is a useful tool in medicine, with applications as a biomarker in diagnosis, prognosis, disease profiling, and treatment selection. In oncology, the ease of access to the tumour genome is a major advantage of cell-free DNA, but while this has led to significant research in blood, other body fluids have not received equal attention. This review article summarises the current research into cell-free DNA in non-blood body fluids, highlighting its values and limitations, and suggesting the direction of future studies. We conclude that cell-free DNA from non-blood body fluids may provide additional information to supplement traditional biopsies, allowing informative and improved patient care across many cancer types. Abstract Cell-free DNA (cfDNA) is a useful molecular biomarker in oncology research and treatment, but while research into its properties in blood has flourished, there remains much to be discovered about cfDNA in other body fluids. The cfDNA from saliva, sputum, cerebrospinal fluid, urine, faeces, pleural effusions, and ascites has unique advantages over blood, and has potential as an alternative ‘liquid biopsy’ template. This review summarises the state of current knowledge and identifies the gaps in our understanding of non-blood liquid biopsies; where their advantages lie, where caution is needed, where they might fit clinically, and where research should focus in order to accelerate clinical implementation. An emphasis is placed on ascites and pleural effusions, being pathological fluids directly associated with cancer. We conclude that non-blood fluids are viable sources of cfDNA in situations where solid tissue biopsies are inaccessible, or only accessible from dated archived specimens. In addition, we show that due to the abundance of cfDNA in non-blood fluids, they can outperform blood in many circumstances. We demonstrate multiple instances in which DNA from various sources can provide additional information, and thus we advocate for analysing non-blood sources as a complement to blood and/or tissue. Further research into these fluids will highlight opportunities to improve patient outcomes across cancer types.
Collapse
|
7
|
Malignant pleural effusions for cancer genotyping: A matter of trans-pleural traffic of cell-free tumor DNA. Mol Cell Probes 2022; 61:101793. [DOI: 10.1016/j.mcp.2022.101793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/29/2022] [Accepted: 01/29/2022] [Indexed: 11/19/2022]
|