2
|
Qin Z, Yue M, Tang S, Wu F, Sun H, Li Y, Zhang Y, Izumi H, Huang H, Wang W, Xue Y, Tong X, Mori S, Taki T, Goto K, Jin Y, Li F, Li FM, Gao Y, Fang Z, Fang Y, Hu L, Yan X, Xu G, Chen H, Kobayashi SS, Ventura A, Wong KK, Zhu X, Chen L, Ren S, Chen LN, Ji H. EML4-ALK fusions drive lung adeno-to-squamous transition through JAK-STAT activation. J Exp Med 2024; 221:e20232028. [PMID: 38284990 PMCID: PMC10824105 DOI: 10.1084/jem.20232028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/30/2024] Open
Abstract
Human lung adenosquamous cell carcinoma (LUAS), containing both adenomatous and squamous pathologies, exhibits strong cancer plasticity. We find that ALK rearrangement is detectable in 5.1-7.5% of human LUAS, and transgenic expression of EML4-ALK drives lung adenocarcinoma (LUAD) formation initially and squamous transition at late stage. We identify club cells as the main cell-of-origin for squamous transition. Through recapitulating lineage transition in organoid system, we identify JAK-STAT signaling, activated by EML4-ALK phase separation, significantly promotes squamous transition. Integrative study with scRNA-seq and immunostaining identify a plastic cell subpopulation in ALK-rearranged human LUAD showing squamous biomarker expression. Moreover, those relapsed ALK-rearranged LUAD show notable upregulation of squamous biomarkers. Consistently, mouse squamous tumors or LUAD with squamous signature display certain resistance to ALK inhibitor, which can be overcome by combined JAK1/2 inhibitor treatment. This study uncovers strong plasticity of ALK-rearranged tumors in orchestrating phenotypic transition and drug resistance and proposes a potentially effective therapeutic strategy.
Collapse
Affiliation(s)
- Zhen Qin
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Meiting Yue
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shijie Tang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Fengying Wu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Honghua Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Li
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yongchang Zhang
- Department of Medical Oncology, Hunan Cancer Hospital, Central South University, Changsha, China
| | - Hiroki Izumi
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hsinyi Huang
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York University Langone Health, New York, NY, USA
| | - Wanying Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yun Xue
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Xinyuan Tong
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Shunta Mori
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Tetsuro Taki
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Koichi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yujuan Jin
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Fei Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fu-Ming Li
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Yijun Gao
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhaoyuan Fang
- University of Edinburgh Institute, Zhejiang University, Haining, China
| | - Yisheng Fang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liang Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Xiumin Yan
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoliang Xu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Haiquan Chen
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Susumu S. Kobayashi
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Andrea Ventura
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kwok-Kin Wong
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York University Langone Health, New York, NY, USA
| | - Xueliang Zhu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Liang Chen
- Ministry of Education Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Luo-Nan Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
3
|
Yang C, Zeng R, Zha Y, Li Y, Wang T, Zhao R, Li M, Zhang J. Case report: Clinical complete response in advanced ALK-positive lung squamous cell carcinoma: a case study of successful anti-PD-1 immunotherapy post ALK-TKIs failure. Front Immunol 2024; 15:1360671. [PMID: 38380327 PMCID: PMC10876774 DOI: 10.3389/fimmu.2024.1360671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/16/2024] [Indexed: 02/22/2024] Open
Abstract
In patients with advanced lung adenocarcinoma (LADC) harboring the echinoderm microtubule-associated protein-like 4 (EML4) -anaplastic lymphoma kinase (ALK) rearrangement, targeted therapy typically demonstrates superior efficacy as an initial treatment compared to chemotherapy. Following resistance to ALK-tyrosine kinase inhibitors (TKIs), regimens incorporating platinum-based dual agents or combined with bevacizumab often show effectiveness. However, therapeutic alternatives become constrained after resistance develops to both TKIs and platinum-based therapies. Given that the majority of ALK-positive non-small cell lung carcinomas (NSCLC) are LADC, the benefits of TKIs for patients with ALK-positive lung squamous cell carcinoma (LSCC) and the optimal treatment strategy for these patients remain a subject of debate. In this case study, we report on a patient with advanced LSCC, in whom the EML4-ALK rearrangement was identified via ARMS-PCR (Amplification Refractory Mutation System-Polymerase Chain Reaction). The patient underwent oral treatment with crizotinib and alectinib, showing effectiveness in both first-line and second-line ALK-TKI therapies, albeit with limited progression-free survival (PFS). Subsequent resistance to second-generation TKI was followed by the detection of tumors in the left neck region via computed tomography (CT). Biopsy pathology revealed non-squamous cell carcinoma, and subsequent treatment with platinum-based double-drug therapy proved ineffective. Further analysis through next-generation sequencing (NGS) indicated ALK negativity but a high expression of programmed death-ligand 1 (PD-L1). Immunotherapy was then initiated, resulting in a PFS of over 29 months and clinical complete remission (cCR). This case underscores the potential benefit of ALK-TKIs in patients with ALK-positive LSCC. Resistance to second-generation TKIs may lead to ALK negativity and histological transformation, highlighting the necessity of repeated biopsies post-TKI resistance for informed treatment decision-making. As of November 2023, imaging studies continue to indicate cCR in the patient, with a survival time exceeding 47 months.
Collapse
Affiliation(s)
- Chen Yang
- Zhongshan City People’s Hospital, Xinxiang Medical University, Xinxiang, China
- Department of Radiotherapy, Zhongshan City People’s Hospital, Zhongshan, China
| | - Rui Zeng
- Department of Radiotherapy, Zhongshan City People’s Hospital, Zhongshan, China
| | - Yawen Zha
- Department of Radiotherapy, Zhongshan City People’s Hospital, Zhongshan, China
| | - Yani Li
- Department of Radiotherapy, Zhongshan City People’s Hospital, Zhongshan, China
| | - Ting Wang
- Department of Radiotherapy, Zhongshan City People’s Hospital, Zhongshan, China
| | - Ruolan Zhao
- Department of Imaging, Zhongshan City People’s Hospital, Zhongshan, China
| | - Minying Li
- Department of Radiotherapy, Zhongshan City People’s Hospital, Zhongshan, China
| | - Jingjing Zhang
- Department of Radiotherapy, Zhongshan City People’s Hospital, Zhongshan, China
| |
Collapse
|
5
|
Calabrese F, Pezzuto F, Lunardi F, Fortarezza F, Tzorakoleftheraki SE, Resi MV, Tiné M, Pasello G, Hofman P. Morphologic-Molecular Transformation of Oncogene Addicted Non-Small Cell Lung Cancer. Int J Mol Sci 2022; 23:4164. [PMID: 35456982 PMCID: PMC9031930 DOI: 10.3390/ijms23084164] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 02/05/2023] Open
Abstract
Patients with non-small cell lung cancer, especially adenocarcinomas, harbour at least one oncogenic driver mutation that can potentially be a target for therapy. Treatments of these oncogene-addicted tumours, such as the use of tyrosine kinase inhibitors (TKIs) of mutated epidermal growth factor receptor, have dramatically improved the outcome of patients. However, some patients may acquire resistance to treatment early on after starting a targeted therapy. Transformations to other histotypes-small cell lung carcinoma, large cell neuroendocrine carcinoma, squamous cell carcinoma, and sarcomatoid carcinoma-have been increasingly recognised as important mechanisms of resistance and are increasingly becoming a topic of interest for all specialists involved in the diagnosis, management, and care of these patients. This article, after examining the most used TKI agents and their main biological activities, discusses histological and molecular transformations with an up-to-date review of all previous cases published in the field. Liquid biopsy and future research directions are also briefly discussed to offer the reader a complete and up-to-date overview of the topic.
Collapse
Affiliation(s)
- Fiorella Calabrese
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, 35128 Padova, Italy; (F.P.); (F.L.); (F.F.); (M.T.)
| | - Federica Pezzuto
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, 35128 Padova, Italy; (F.P.); (F.L.); (F.F.); (M.T.)
| | - Francesca Lunardi
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, 35128 Padova, Italy; (F.P.); (F.L.); (F.F.); (M.T.)
| | - Francesco Fortarezza
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, 35128 Padova, Italy; (F.P.); (F.L.); (F.F.); (M.T.)
| | | | - Maria Vittoria Resi
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (M.V.R.); (G.P.)
- Medical Oncology 2, Istituto Oncologico Veneto IOV-IRCSS, Padova, 35128 Padova, Italy
| | - Mariaenrica Tiné
- Department of Cardiac, Thoracic, Vascular Sciences, and Public Health, University of Padova, 35128 Padova, Italy; (F.P.); (F.L.); (F.F.); (M.T.)
| | - Giulia Pasello
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (M.V.R.); (G.P.)
- Medical Oncology 2, Istituto Oncologico Veneto IOV-IRCSS, Padova, 35128 Padova, Italy
| | - Paul Hofman
- Laboratoire de Pathologie Clinique et Expérimentale, FHU OncoAge, Biobank BB-0033-00025, Université Côte d’Azur, 06000 Nice, France;
| |
Collapse
|