1
|
Alleman C, Gadais C, Legentil L, Porée FH. Strategies to access the [5-8] bicyclic core encountered in the sesquiterpene, diterpene and sesterterpene series. Beilstein J Org Chem 2023; 19:245-281. [PMID: 36895430 PMCID: PMC9989678 DOI: 10.3762/bjoc.19.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Terpene compounds probably represent the most diversified class of secondary metabolites. Some classes of terpenes, mainly diterpenes (C20) and sesterterpenes (C25) and to a lesser extent sesquiterpenes (C15), share a common bicyclo[3.6.0]undecane core which is characterized by the presence of a cyclooctane ring fused to a cyclopentane ring, i.e., a [5-8] bicyclic ring system. This review focuses on the different strategies elaborated to construct this [5-8] bicyclic ring system and their application in the total synthesis of terpenes over the last two decades. The overall approaches involve the construction of the 8-membered ring from an appropriate cyclopentane precursor. The proposed strategies include metathesis, Nozaki-Hiyama-Kishi (NHK) cyclization, Pd-mediated cyclization, radical cyclization, Pauson-Khand reaction, Lewis acid-promoted cyclization, rearrangement, cycloaddition and biocatalysis.
Collapse
Affiliation(s)
- Cécile Alleman
- Université Rennes, Faculté de Pharmacie, CNRS ISCR UMR 6226, F-35000 Rennes, France
| | - Charlène Gadais
- Université Rennes, Faculté de Pharmacie, CNRS ISCR UMR 6226, F-35000 Rennes, France
| | - Laurent Legentil
- Université Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France
| | | |
Collapse
|
2
|
Chen B, Wu Q, Xu D, Zhang X, Ding Y, Bao S, Zhang X, Wang L, Chen Y. A Two-Phase Approach to Fusicoccane Synthesis To Uncover a Compound That Reduces Tumourigenesis in Pancreatic Cancer Cells. Angew Chem Int Ed Engl 2022; 61:e202117476. [PMID: 35166433 DOI: 10.1002/anie.202117476] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 12/19/2022]
Abstract
Alterbrassicicene D (1) and 3(11)-epoxyhypoestenone (2) were synthesised via a two-phase approach featuring concise construction of the 5-8-5 tricyclic intermediate and a tandem base-mediated epoxide opening-transannular oxa-Michael addition cascade to forge the complex skeleton of 2. The route is scalable and we generated 15 g of the tricyclic intermediate in 8 steps from (R)-limonene and 720 mg of the penultimate bioactive intermediate in a protecting-group-free manner. Our synthesis enabled the structural determination of 2 and provided materials for preliminary anticancer evaluation. The penultimate intermediate showed therapeutic potential in terms of its ability to dramatically reduce the tumourigenic potential of PANC-1 pancreatic cancer cells according to a limiting dilution tumour-initiating assay. Our synthetic approach will facilitate unified access to naturally occurring fusicoccanes and their derivatives for anticancer evaluation.
Collapse
Affiliation(s)
- Bolin Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Tianjin, 300353, P. R. China
| | - Qianwei Wu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Tianjin, 300353, P. R. China
| | - Dongdong Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Tianjin, 300353, P. R. China
| | - Xijing Zhang
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China
| | - Yahui Ding
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China
| | - Shiqi Bao
- Accendatech Company, Ltd, 7 Fengze Road, Tianjin, 300384, P. R. China
| | - Xuemei Zhang
- Accendatech Company, Ltd, 7 Fengze Road, Tianjin, 300384, P. R. China
| | - Liang Wang
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China
| | - Yue Chen
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China
| |
Collapse
|
3
|
Chen B, Wu Q, Xu D, Zhang X, Ding Y, Bao S, Zhang X, Wang L, Chen Y. A Two‐Phase Approach to Fusicoccane Synthesis To Uncover a Compound That Reduces Tumourigenesis in Pancreatic Cancer Cells. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bolin Chen
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University 38 Tongyan Road Tianjin 300353 P. R. China
| | - Qianwei Wu
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University 38 Tongyan Road Tianjin 300353 P. R. China
| | - Dongdong Xu
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy Nankai University 38 Tongyan Road Tianjin 300353 P. R. China
| | - Xijing Zhang
- College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 P. R. China
| | - Yahui Ding
- College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 P. R. China
| | - Shiqi Bao
- Accendatech Company, Ltd 7 Fengze Road Tianjin 300384 P. R. China
| | - Xuemei Zhang
- Accendatech Company, Ltd 7 Fengze Road Tianjin 300384 P. R. China
| | - Liang Wang
- College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 P. R. China
| | - Yue Chen
- College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 P. R. China
| |
Collapse
|
4
|
Uwamori M, Osada R, Sugiyama R, Nagatani K, Nakada M. Enantioselective Total Synthesis of Cotylenin A. J Am Chem Soc 2020; 142:5556-5561. [DOI: 10.1021/jacs.0c01774] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Masahiro Uwamori
- Department of Chemistry and Biochemistry, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Ryunosuke Osada
- Department of Chemistry and Biochemistry, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Ryoji Sugiyama
- Department of Chemistry and Biochemistry, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Kotaro Nagatani
- Department of Chemistry and Biochemistry, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Masahisa Nakada
- Department of Chemistry and Biochemistry, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
5
|
Tsuna K, Noguchi N, Nakada M. Enantioselective Total Synthesis of (+)-Ophiobolin A. Chemistry 2013; 19:5476-86. [DOI: 10.1002/chem.201204119] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/16/2013] [Indexed: 11/05/2022]
|
6
|
Shafawati MS, Inagaki F, Kawamura T, Mukai C. Syntheses of 6-8-5 tricyclic ring systems by carbonylative [2+2+1] cycloaddition of bis(allene)s. Tetrahedron 2013. [DOI: 10.1016/j.tet.2012.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Li K, Wang C, Yin G, Gao S. Construction of the basic skeleton of ophiobolin A and variecolin. Org Biomol Chem 2013; 11:7550-8. [DOI: 10.1039/c3ob41693c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Jianping Z, Guifang D, Kai Z, Yongjun Z, Yongliang L, Liuqing Y. Screening and identification of insertion mutants from Bipolaris eleusines by mutagenesis based on restriction enzyme-mediated integration. FEMS Microbiol Lett 2012; 330:90-7. [PMID: 22432435 DOI: 10.1111/j.1574-6968.2012.02537.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Ophiobolin A is sesterterpenoid-type phytotoxin and may be an important candidate for development of new crop protection and pharmaceutical products. The restriction enzyme-mediated integration (REMI) method was used to introduce the plasmid pSH75 into the ophiobolin A-producing filamentous fungus Bipolaris eleusines. A total of 323 stable transformants were obtained, all of which were capable of growing on potato-dextrose agar medium containing 200 μg mL(-1) hygromycin B. The transformation frequency was about 4-5 transformants μg(-1) plasmid DNA. An ophibolin A-deficient transformant (B014) was assessed and the presence of the hph gene in this transformant was confirmed by PCR. The cell-free cultural filtrates of this transformant showed significantly less inhibition on mycelial growth of the fungal pathogen Rhizoctoni solani but little effect on barnyard grass as opposed to that of the wild-type B. eleusines. There was no detectable amount of ophiobolin A in B014 samples measured with HPLC. This research suggests REMI as a potential approach for improving the production of ophiobolin A by B. eleusines via genetic engineering to upregulate certain genes responsible for desired biosynthetic pathways.
Collapse
Affiliation(s)
- Zhang Jianping
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
9
|
Hog DT, Webster R, Trauner D. Synthetic approaches toward sesterterpenoids. Nat Prod Rep 2012; 29:752-79. [DOI: 10.1039/c2np20005h] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Tsuna K, Noguchi N, Nakada M. Convergent total synthesis of (+)-ophiobolin A. Angew Chem Int Ed Engl 2011; 50:9452-5. [PMID: 21915975 DOI: 10.1002/anie.201104447] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Indexed: 11/10/2022]
Affiliation(s)
- Kazuhiro Tsuna
- Department of Chemistry and Biochemistry, Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | | | | |
Collapse
|
11
|
|
12
|
Michalak M, Michalak K, Urbanczyk-Lipkowska Z, Wicha J. Synthetic Studies on Dicyclopenta[a,d]cyclooctane Terpenoids: Construction of the Core Structure of Fusicoccins and Ophiobolins on the Route Involving a Wagner-Meerwein Rearrangement. J Org Chem 2011; 76:7497-509. [DOI: 10.1021/jo201357p] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michał Michalak
- Institute of Organic Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Karol Michalak
- Institute of Organic Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Zofia Urbanczyk-Lipkowska
- Institute of Organic Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Jerzy Wicha
- Institute of Organic Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
13
|
Horváth A, Szájli Á, Kiss R, Kóti J, Mahó S, Skoda-Földes R. Ionic liquid-promoted Wagner-Meerwein rearrangement of 16α,17α-epoxyandrostanes and 16α,17α-epoxyestranes. J Org Chem 2011; 76:6048-56. [PMID: 21668005 DOI: 10.1021/jo2006285] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ionic liquids 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim](+)[PF(6)](-)) and 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim](+)[BF(4)](-)) were found to promote an unusual Wagner-Meerwein rearrangement of steroidal 16α,17α-epoxides leading to unnatural 13-epi-18-nor-16-one derivatives as the main products. These compounds were isolated in good to excellent yields. 16α-Hydroxy-Δ(13)-18-norsteroids, the results of the usual rearrangement, were obtained as minor components of the reaction mixtures. The ionic liquid [bmim](+)[PF(6)](-) was shown to induce C-ring aromatization of 16α,17α-epoxyestranes due to the formation of HF, the hydrolysis product of [PF(6)](-). Increasing amounts of HF and [PO(2)F(2)](-) were detected by (19)F and (31)P NMR when the ionic liquid was reused. The structures of the steroidal products, 16-oxo-18-nor-13α-steroid derivatives, 16α-hydroxy-Δ(13)-18-norsteroids, and C-aromatic compounds were determined by two-dimensional NMR techniques and high-resolution mass spectrometry (HRMS). The ionic liquids were recirculated efficiently.
Collapse
Affiliation(s)
- Anita Horváth
- Department of Organic Chemistry, Institute of Chemistry, University of Pannonia, Post Office Box 158, H-8201 Veszprém, Hungary
| | | | | | | | | | | |
Collapse
|
14
|
Michalak K, Michalak M, Wicha J. Construction of the Tricyclic 5−7−6 Scaffold of Fungi-Derived Diterpenoids. Total Synthesis of (±)-Heptemerone G and an Approach to Danishefsky’s Intermediate for Guanacastepene A Synthesis. J Org Chem 2010; 75:8337-50. [DOI: 10.1021/jo101758t] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Karol Michalak
- Institute of Organic Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw 48, Poland
| | - Michał Michalak
- Institute of Organic Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw 48, Poland
| | - Jerzy Wicha
- Institute of Organic Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw 48, Poland
| |
Collapse
|
15
|
Michalak K, Michalak M, Wicha J. A facile construction of the tricyclic 5-7-6 scaffold of fungi-derived diterpenoids. The first total synthesis of (±)-heptemerone G and a new approach to Danishefsky’s intermediate for a guanacastepene A synthesis. Tetrahedron Lett 2010. [DOI: 10.1016/j.tetlet.2010.06.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Construction of eight-membered carbocycles with trisubstituted double bonds using the ring closing metathesis reaction. Molecules 2010; 15:4242-60. [PMID: 20657438 PMCID: PMC6264272 DOI: 10.3390/molecules15064242] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 06/07/2010] [Accepted: 06/10/2010] [Indexed: 11/17/2022] Open
Abstract
Medium sized carbocycles are particularly difficult to synthesize. Ring closing metathesis reactions (RCM) have recently been applied to construct eight-membered carbocycles, but trisubstituted double bonds in the eight-membered rings are more difficult to produce using RCM reactions. In this review, model examples and our own results are cited and the importance of the preparation of suitably designed precursors is discussed. Examples of RCM reactions used in the total synthesis of natural products are also outlined.
Collapse
|
17
|
Bräse S, Encinas A, Keck J, Nising CF. Chemistry and Biology of Mycotoxins and Related Fungal Metabolites. Chem Rev 2009; 109:3903-90. [DOI: 10.1021/cr050001f] [Citation(s) in RCA: 411] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Stefan Bräse
- Institut für Organische Chemie,Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Arantxa Encinas
- Institut für Organische Chemie,Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Julia Keck
- Institut für Organische Chemie,Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Carl F. Nising
- Institut für Organische Chemie,Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| |
Collapse
|
18
|
Touré BB, Hall DG. Natural Product Synthesis Using Multicomponent Reaction Strategies. Chem Rev 2009; 109:4439-86. [PMID: 19480390 DOI: 10.1021/cr800296p] [Citation(s) in RCA: 1299] [Impact Index Per Article: 86.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Barry B. Touré
- Department of Oncology Chemistry, Novartis Institutes for Biomedical Research, Inc., 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Dennis G. Hall
- Department of Oncology Chemistry, Novartis Institutes for Biomedical Research, Inc., 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|