Kopidakis N, Neale NR, Frank AJ. Effect of an adsorbent on recombination and band-edge movement in dye-sensitized TiO2 solar cells: evidence for surface passivation.
J Phys Chem B 2007;
110:12485-9. [PMID:
16800576 DOI:
10.1021/jp0607364]
[Citation(s) in RCA: 261] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanism by which the adsorbent guanidinium affects the open-circuit photovoltage of dye-sensitized TiO2 nanocrystalline solar cells was investigated. The influence of the guanidinium cation on the rate of recombination and band-edge movement was measured by transient photovoltage. When guanidinium is present in the electrolyte recombination becomes slower by a factor of about 20. At the same time, the adsorbent causes the band edges to move downward, toward positive electrochemical potentials, by 100 mV. The collective effect of both a downward shift of the band edges and slower recombination, owing to the presence of guanidinium, results in an overall improvement in the open-circuit photovoltage.
Collapse