1
|
Emam MM, Houssein EH, Samee NA, Alkhalifa AK, Hosney ME. Optimizing cancer diagnosis: A hybrid approach of genetic operators and Sinh Cosh Optimizer for tumor identification and feature gene selection. Comput Biol Med 2024; 180:108984. [PMID: 39128177 DOI: 10.1016/j.compbiomed.2024.108984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/30/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
The identification of tumors through gene analysis in microarray data is a pivotal area of research in artificial intelligence and bioinformatics. This task is challenging due to the large number of genes relative to the limited number of observations, making feature selection a critical step. This paper introduces a novel wrapper feature selection method that leverages a hybrid optimization algorithm combining a genetic operator with a Sinh Cosh Optimizer (SCHO), termed SCHO-GO. The SCHO-GO algorithm is designed to avoid local optima, streamline the search process, and select the most relevant features without compromising classifier performance. Traditional methods often falter with extensive search spaces, necessitating hybrid approaches. Our method aims to reduce the dimensionality and improve the classification accuracy, which is essential in pattern recognition and data analysis. The SCHO-GO algorithm, integrated with a support vector machine (SVM) classifier, significantly enhances cancer classification accuracy. We evaluated the performance of SCHO-GO using the CEC'2022 benchmark function and compared it with seven well-known metaheuristic algorithms. Statistical analyses indicate that SCHO-GO consistently outperforms these algorithms. Experimental tests on eight microarray gene expression datasets, particularly the Gene Expression Cancer RNA-Seq dataset, demonstrate an impressive accuracy of 99.01% with the SCHO-GO-SVM model, highlighting its robustness and precision in handling complex datasets. Furthermore, the SCHO-GO algorithm excels in feature selection and solving mathematical benchmark problems, presenting a promising approach for tumor identification and classification in microarray data analysis.
Collapse
Affiliation(s)
- Marwa M Emam
- Faculty of Computers and Information, Minia University, Minia, Egypt.
| | - Essam H Houssein
- Faculty of Computers and Information, Minia University, Minia, Egypt.
| | - Nagwan Abdel Samee
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Amal K Alkhalifa
- Department of Computer Science and Information Technology, Applied College, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Mosa E Hosney
- Faculty of Computers and Information, Luxor University, Luxor, Egypt.
| |
Collapse
|
2
|
Houssein EH, Mohamed O, Abdel Samee N, Mahmoud NF, Talaat R, Al-Hejri AM, Al-Tam RM. Using deep DenseNet with cyclical learning rate to classify leukocytes for leukemia identification. Front Oncol 2023; 13:1230434. [PMID: 37771437 PMCID: PMC10523295 DOI: 10.3389/fonc.2023.1230434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/15/2023] [Indexed: 09/30/2023] Open
Abstract
Background The examination, counting, and classification of white blood cells (WBCs), also known as leukocytes, are essential processes in the diagnosis of many disorders, including leukemia, a kind of blood cancer characterized by the uncontrolled proliferation of carcinogenic leukocytes in the marrow of the bone. Blood smears can be chemically or microscopically studied to better understand hematological diseases and blood disorders. Detecting, identifying, and categorizing the many blood cell types are essential for disease diagnosis and therapy planning. A theoretical and practical issue. However, methods based on deep learning (DL) have greatly helped blood cell classification. Materials and Methods Images of blood cells in a microscopic smear were collected from GitHub, a public source that uses the MIT license. An end-to-end computer-aided diagnosis (CAD) system for leukocytes has been created and implemented as part of this study. The introduced system comprises image preprocessing and enhancement, image segmentation, feature extraction and selection, and WBC classification. By combining the DenseNet-161 and the cyclical learning rate (CLR), we contribute an approach that speeds up hyperparameter optimization. We also offer the one-cycle technique to rapidly optimize all hyperparameters of DL models to boost training performance. Results The dataset has been split into two sets: approximately 80% of the data (9,966 images) for the training set and 20% (2,487 images) for the validation set. The validation set has 623, 620, 620, and 624 eosinophil, lymphocyte, monocyte, and neutrophil images, whereas the training set has 2,497, 2,483, 2,487, and 2,499, respectively. The suggested method has 100% accuracy on the training set of images and 99.8% accuracy on the testing set. Conclusion Using a combination of the recently developed pretrained convolutional neural network (CNN), DenseNet, and the one fit cycle policy, this study describes a technique of training for the classification of WBCs for leukemia detection. The proposed method is more accurate compared to the state of the art.
Collapse
Affiliation(s)
- Essam H. Houssein
- Faculty of Computers and Information, Minia University, Minia, Egypt
| | - Osama Mohamed
- Faculty of Computers and Artificial Intelligence, Beni-Suef University, Beni-Suef, Egypt
| | - Nagwan Abdel Samee
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Noha F. Mahmoud
- Rehabilitation Sciences Department, Health and Rehabilitation Sciences College, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Rawan Talaat
- Biotechnology & Genetics Department, Agriculture Engineering, Ain Shams University, Cairo, Egypt
| | - Aymen M. Al-Hejri
- School of Computational Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Ma-harashtra, India
| | - Riyadh M. Al-Tam
- School of Computational Sciences, Swami Ramanand Teerth Marathwada University, Nanded, Ma-harashtra, India
| |
Collapse
|
3
|
Edache EI, Uzairu A, Mamza PA, Shallangwa GA, Yagin FH, Abdel Samee N, Mahmoud NF. Combining docking, molecular dynamics simulations, AD-MET pharmacokinetics properties, and MMGBSA calculations to create specialized protocols for running effective virtual screening campaigns on the autoimmune disorder and SARS-CoV-2 main protease. Front Mol Biosci 2023; 10:1254230. [PMID: 37771457 PMCID: PMC10523577 DOI: 10.3389/fmolb.2023.1254230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/15/2023] [Indexed: 09/30/2023] Open
Abstract
The development of novel medicines to treat autoimmune diseases and SARS-CoV-2 main protease (Mpro), a virus that can cause both acute and chronic illnesses, is an ongoing necessity for the global community. The primary objective of this research is to use CoMFA methods to evaluate the quantitative structure-activity relationship (QSAR) of a select group of chemicals concerning autoimmune illnesses. By performing a molecular docking analysis, we may verify previously observed tendencies and gain insight into how receptors and ligands interact. The results of the 3D QSAR models are quite satisfactory and give significant statistical results: Q_loo∧2 = 0.5548, Q_lto∧2 = 0.5278, R∧2 = 0.9990, F-test = 3,101.141, SDEC = 0.017 for the CoMFA FFDSEL, and Q_loo∧2 = 0.7033, Q_lto∧2 = 0.6827, Q_lmo∧2 = 0.6305, R∧2 = 0.9984, F-test = 1994.0374, SDEC = 0.0216 for CoMFA UVEPLS. The success of these two models in exceeding the external validation criteria used and adhering to the Tropsha and Glorbaikh criteria's upper and lower bounds can be noted. We report the docking simulation of the compounds as an inhibitor of the SARS-CoV-2 Mpro and an autoimmune disorder in this context. For a few chosen autoimmune disorder receptors (protein tyrosine phosphatase, nonreceptor type 22 (lymphoid) isoform 1 (PTPN22), type 1 diabetes, rheumatoid arthritis, and SARS-CoV-2 Mpro, the optimal binding characteristics of the compounds were described. According to their potential for effectiveness, the studied compounds were ranked, and those that demonstrated higher molecular docking scores than the reference drugs were suggested as potential new drug candidates for the treatment of autoimmune disease and SARS-CoV-2 Mpro. Additionally, the results of analyses of drug similarity, ADME (Absorption, Distribution, Metabolism, and Excretion), and toxicity were used to screen the best-docked compounds in which compound 4 scaled through. Finally, molecular dynamics (MD) simulation was used to verify compound 4's stability in the complex with the chosen autoimmune diseases and SARS-CoV-2 Mpro protein. This compound showed a steady trajectory and molecular characteristics with a predictable pattern of interactions. These findings suggest that compound 4 may hold potential as a therapy for autoimmune diseases and SARS-CoV-2 Mpro.
Collapse
Affiliation(s)
| | - Adamu Uzairu
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
| | | | | | - Fatma Hilal Yagin
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, Malatya, Türkiye
| | - Nagwan Abdel Samee
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Noha F. Mahmoud
- Rehabilitation Sciences Department, Health and Rehabilitation Sciences College, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Rafiq A, Chursin A, Awad Alrefaei W, Rashed Alsenani T, Aldehim G, Abdel Samee N, Menzli LJ. Detection and Classification of Histopathological Breast Images Using a Fusion of CNN Frameworks. Diagnostics (Basel) 2023; 13:diagnostics13101700. [PMID: 37238186 DOI: 10.3390/diagnostics13101700] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/07/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Breast cancer is responsible for the deaths of thousands of women each year. The diagnosis of breast cancer (BC) frequently makes the use of several imaging techniques. On the other hand, incorrect identification might occasionally result in unnecessary therapy and diagnosis. Therefore, the accurate identification of breast cancer can save a significant number of patients from undergoing unnecessary surgery and biopsy procedures. As a result of recent developments in the field, the performance of deep learning systems used for medical image processing has showed significant benefits. Deep learning (DL) models have found widespread use for the aim of extracting important features from histopathologic BC images. This has helped to improve the classification performance and has assisted in the automation of the process. In recent times, both convolutional neural networks (CNNs) and hybrid models of deep learning-based approaches have demonstrated impressive performance. In this research, three different types of CNN models are proposed: a straightforward CNN model (1-CNN), a fusion CNN model (2-CNN), and a three CNN model (3-CNN). The findings of the experiment demonstrate that the techniques based on the 3-CNN algorithm performed the best in terms of accuracy (90.10%), recall (89.90%), precision (89.80%), and f1-Score (89.90%). In conclusion, the CNN-based approaches that have been developed are contrasted with more modern machine learning and deep learning models. The application of CNN-based methods has resulted in a significant increase in the accuracy of the BC classification.
Collapse
Affiliation(s)
- Ahsan Rafiq
- School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Alexander Chursin
- Higher School of Industrial Policy and Entrepreneurship, RUDN University, 6 Miklukho-Maklaya St, Moscow 117198, Russia
| | - Wejdan Awad Alrefaei
- Department of Programming and Computer Sciences, Applied College in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 16245, Saudi Arabia
| | - Tahani Rashed Alsenani
- Department of Biology, College of Sciences in Yanbu, Taibah University, Yanbu 46522, Saudi Arabia
| | - Ghadah Aldehim
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nagwan Abdel Samee
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Leila Jamel Menzli
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
5
|
Samee NA, Ahmad T, Mahmoud NF, Atteia G, Abdallah HA, Rizwan A. Clinical Decision Support Framework for Segmentation and Classification of Brain Tumor MRIs Using a U-Net and DCNN Cascaded Learning Algorithm. Healthcare (Basel) 2022; 10:healthcare10122340. [PMID: 36553864 PMCID: PMC9777942 DOI: 10.3390/healthcare10122340] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022] Open
Abstract
Brain tumors (BTs) are an uncommon but fatal kind of cancer. Therefore, the development of computer-aided diagnosis (CAD) systems for classifying brain tumors in magnetic resonance imaging (MRI) has been the subject of many research papers so far. However, research in this sector is still in its early stage. The ultimate goal of this research is to develop a lightweight effective implementation of the U-Net deep network for use in performing exact real-time segmentation. Moreover, a simplified deep convolutional neural network (DCNN) architecture for the BT classification is presented for automatic feature extraction and classification of the segmented regions of interest (ROIs). Five convolutional layers, rectified linear unit, normalization, and max-pooling layers make up the DCNN's proposed simplified architecture. The introduced method was verified on multimodal brain tumor segmentation (BRATS 2015) datasets. Our experimental results on BRATS 2015 acquired Dice similarity coefficient (DSC) scores, sensitivity, and classification accuracy of 88.8%, 89.4%, and 88.6% for high-grade gliomas. When it comes to segmenting BRATS 2015 BT images, the performance of our proposed CAD framework is on par with existing state-of-the-art methods. However, the accuracy achieved in this study for the classification of BT images has improved upon the accuracy reported in prior studies. Image classification accuracy for BRATS 2015 BT has been improved from 88% to 88.6%.
Collapse
Affiliation(s)
- Nagwan Abdel Samee
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Tahir Ahmad
- Department of Computer Science, COMSATS University Islamabad, Attock Campus, Attock 43600, Pakistan
| | - Noha F. Mahmoud
- Rehabilitation Sciences Department, Health and Rehabilitation Sciences College, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
- Correspondence: (N.F.M.); (G.A.); (A.R.)
| | - Ghada Atteia
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
- Correspondence: (N.F.M.); (G.A.); (A.R.)
| | - Hanaa A. Abdallah
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Atif Rizwan
- Department of Computer Engineering, Jeju National University, Jejusi 63243, Republic of Korea
- Correspondence: (N.F.M.); (G.A.); (A.R.)
| |
Collapse
|
6
|
Samee NA, Alhussan AA, Ghoneim VF, Atteia G, Alkanhel R, Al-antari MA, Kadah YM. A Hybrid Deep Transfer Learning of CNN-Based LR-PCA for Breast Lesion Diagnosis via Medical Breast Mammograms. SENSORS 2022; 22:s22134938. [PMID: 35808433 PMCID: PMC9269713 DOI: 10.3390/s22134938] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 12/16/2022]
Abstract
One of the most promising research areas in the healthcare industry and the scientific community is focusing on the AI-based applications for real medical challenges such as the building of computer-aided diagnosis (CAD) systems for breast cancer. Transfer learning is one of the recent emerging AI-based techniques that allow rapid learning progress and improve medical imaging diagnosis performance. Although deep learning classification for breast cancer has been widely covered, certain obstacles still remain to investigate the independency among the extracted high-level deep features. This work tackles two challenges that still exist when designing effective CAD systems for breast lesion classification from mammograms. The first challenge is to enrich the input information of the deep learning models by generating pseudo-colored images instead of only using the input original grayscale images. To achieve this goal two different image preprocessing techniques are parallel used: contrast-limited adaptive histogram equalization (CLAHE) and Pixel-wise intensity adjustment. The original image is preserved in the first channel, while the other two channels receive the processed images, respectively. The generated three-channel pseudo-colored images are fed directly into the input layer of the backbone CNNs to generate more powerful high-level deep features. The second challenge is to overcome the multicollinearity problem that occurs among the high correlated deep features generated from deep learning models. A new hybrid processing technique based on Logistic Regression (LR) as well as Principal Components Analysis (PCA) is presented and called LR-PCA. Such a process helps to select the significant principal components (PCs) to further use them for the classification purpose. The proposed CAD system has been examined using two different public benchmark datasets which are INbreast and mini-MAIS. The proposed CAD system could achieve the highest performance accuracies of 98.60% and 98.80% using INbreast and mini-MAIS datasets, respectively. Such a CAD system seems to be useful and reliable for breast cancer diagnosis.
Collapse
Affiliation(s)
- Nagwan Abdel Samee
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (N.A.S.); (G.A.); (R.A.)
| | - Amel A. Alhussan
- Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
- Correspondence:
| | | | - Ghada Atteia
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (N.A.S.); (G.A.); (R.A.)
| | - Reem Alkanhel
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (N.A.S.); (G.A.); (R.A.)
| | - Mugahed A. Al-antari
- Department of Artificial Intelligence, College of Software & Convergence Technology, Daeyang AI Center, Sejong University, Seoul 05006, Korea;
| | - Yasser M. Kadah
- Electrical and Computer Engineering Department, King Abdulaziz University, Jeddah 22254, Saudi Arabia;
- Biomedical Engineering Department, Cairo University, Giza 12613, Egypt
| |
Collapse
|