1
|
Vazquez-Perez F, Gila-Vilchez C, Leon-Cecilla A, Álvarez de Cienfuegos L, Borin D, Odenbach S, Martin JE, Lopez-Lopez MT. Fabrication and Actuation of Magnetic Shape-Memory Materials. ACS APPLIED MATERIALS & INTERFACES 2023; 15. [PMID: 37924281 PMCID: PMC10658454 DOI: 10.1021/acsami.3c14091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023]
Abstract
Soft actuators are deformable materials that change their dimensions or shape in response to external stimuli. Among the various stimuli, remote magnetic fields are one of the most attractive forms of actuation, due to their ease of use, fast response, and safety in biological systems. Composites of magnetic particles with polymer matrices are the most common materials for magnetic soft actuators. In this paper, we demonstrate the fabrication and actuation of magnetic shape-memory materials based on hydrogels containing field-structured magnetic particles. These actuators are formed by placing the pregel dispersion into a mold of the desired on-field shape and exposing it to a homogeneous magnetic field until the gel point is reached. At this point, the material may be removed from the mold and fully gelled in the desired off-field shape. The resultant magnetic shape-memory material then transitions between these two shapes when it is subjected to successive cycles of a homogeneous magnetic field, acting as a large deformation actuator. For actuators that are planar in the off-field state, this can result in significant bending to return to the on-field state. In addition, it is possible to make shape-memory materials that twist under the application of a magnetic field. For these torsional actuators, both experimental and theoretical results are given.
Collapse
Affiliation(s)
- Francisco
J. Vazquez-Perez
- Departamento
de Física Aplicada, Universidad de
Granada, C.U. Fuentenueva, Granada E-18071, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avda. de Madrid 15, Granada E-18012, Spain
| | - Cristina Gila-Vilchez
- Departamento
de Física Aplicada, Universidad de
Granada, C.U. Fuentenueva, Granada E-18071, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avda. de Madrid 15, Granada E-18012, Spain
| | - Alberto Leon-Cecilla
- Departamento
de Física Aplicada, Universidad de
Granada, C.U. Fuentenueva, Granada E-18071, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avda. de Madrid 15, Granada E-18012, Spain
| | - Luis Álvarez de Cienfuegos
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avda. de Madrid 15, Granada E-18012, Spain
- Departamento
de Química Orgánica, Unidad de Excelencia Química
Aplicada a Biomedicina y Medioambiente, Universidad de Granada, C. U. Fuentenueva, Granada E-18071, Spain
| | - Dmitry Borin
- Chair
of Magnetofluiddynamics, Measuring and Automation Technology, Technische Universität Dresden, George-Bähr-Strasse 3, Dresden 01069, Germany
| | - Stefan Odenbach
- Chair
of Magnetofluiddynamics, Measuring and Automation Technology, Technische Universität Dresden, George-Bähr-Strasse 3, Dresden 01069, Germany
| | - James E. Martin
- Sandia
National Laboratories, Albuquerque, New Mexico 87059, United States
| | - Modesto T. Lopez-Lopez
- Departamento
de Física Aplicada, Universidad de
Granada, C.U. Fuentenueva, Granada E-18071, Spain
- Instituto
de Investigación Biosanitaria ibs.GRANADA, Avda. de Madrid 15, Granada E-18012, Spain
| |
Collapse
|
2
|
Weymann A, Foroughi J, Vardanyan R, Punjabi PP, Schmack B, Aloko S, Spinks GM, Wang CH, Arjomandi Rad A, Ruhparwar A. Artificial Muscles and Soft Robotic Devices for Treatment of End-Stage Heart Failure. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207390. [PMID: 36269015 DOI: 10.1002/adma.202207390] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/19/2022] [Indexed: 05/12/2023]
Abstract
Medical soft robotics constitutes a rapidly developing field in the treatment of cardiovascular diseases, with a promising future for millions of patients suffering from heart failure worldwide. Herein, the present state and future direction of artificial muscle-based soft robotic biomedical devices in supporting the inotropic function of the heart are reviewed, focusing on the emerging electrothermally artificial heart muscles (AHMs). Artificial muscle powered soft robotic devices can mimic the action of complex biological systems such as heart compression and twisting. These artificial muscles possess the ability to undergo complex deformations, aiding cardiac function while maintaining a limited weight and use of space. Two very promising candidates for artificial muscles are electrothermally actuated AHMs and biohybrid actuators using living cells or tissue embedded with artificial structures. Electrothermally actuated AHMs have demonstrated superior force generation while creating the prospect for fully soft robotic actuated ventricular assist devices. This review will critically analyze the limitations of currently available devices and discuss opportunities and directions for future research. Last, the properties of the cardiac muscle are reviewed and compared with those of different materials suitable for mechanical cardiac compression.
Collapse
Affiliation(s)
- Alexander Weymann
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany
| | - Javad Foroughi
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany
- Faculty of Engineering and Information Sciences, University of Wollongong, Northfields Ave, Wollongong, NSW, 2522, Australia
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Library Rd, Kensington, NSW, 2052, Australia
| | - Robert Vardanyan
- Department of Medicine, Faculty of Medicine, Imperial College London, Imperial College Road, London, SW7 2AZ, UK
| | - Prakash P Punjabi
- Department of Cardiothoracic Surgery, Hammersmith Hospital, National Heart and Lung Institute, Imperial College London, 72 Du Cane Rd, London, W12 0HS, UK
| | - Bastian Schmack
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany
| | - Sinmisola Aloko
- Faculty of Engineering and Information Sciences, University of Wollongong, Northfields Ave, Wollongong, NSW, 2522, Australia
| | - Geoffrey M Spinks
- Faculty of Engineering and Information Sciences, University of Wollongong, Northfields Ave, Wollongong, NSW, 2522, Australia
| | - Chun H Wang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Library Rd, Kensington, NSW, 2052, Australia
| | - Arian Arjomandi Rad
- Department of Medicine, Faculty of Medicine, Imperial College London, Imperial College Road, London, SW7 2AZ, UK
| | - Arjang Ruhparwar
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany
| |
Collapse
|
3
|
Zhang C, Jin B, Cao X, Chen Z, Miao W, Yang X, Luo Y, Li T, Xie T. Dielectric Polymer with Designable Large Motion under Low Electric Field. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206393. [PMID: 36189869 DOI: 10.1002/adma.202206393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Dielectric elastomers (DEs) can demonstrate fast and large in-plane expansion/contraction due to electric field (e-field)-induced Maxwell stress. For robotic applications, it is often necessary that the in-plane actuation is converted into out-of-plane motions with mechanical frames. Despite their performance appeal, their high driving e-field (20-100 V µm-1 ) demands bulky power accessories and severely compromises their durability. Here, a dielectric polymer that can be programmed into diverse motions actuated under a low e-field (2-10 V µm-1 ) is reported. The material is a crystalline dynamic covalent network that can be reconfigured into arbitrary 3D geometries. This gives rise to a geometric effect that markedly amplifies the actuation, leading to designable large motions when the dielectric polymer is heated above its melting temperature to become a DE. Additionally, the crystallization transition enables dynamic multimodal motions and active deployability. These attributes result in unique design versatility for soft robots.
Collapse
Affiliation(s)
- Chengcheng Zhang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Binjie Jin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Xunuo Cao
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Zheqi Chen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wusha Miao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xuxu Yang
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Yingwu Luo
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Tiefeng Li
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Tao Xie
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310027, China
| |
Collapse
|
4
|
Skarsetz O, Slesarenko V, Walther A. Programmable Auxeticity in Hydrogel Metamaterials via Shape-Morphing Unit Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201867. [PMID: 35748172 PMCID: PMC9376742 DOI: 10.1002/advs.202201867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/16/2022] [Indexed: 05/22/2023]
Abstract
Mechanical metamaterials recruit unique mechanical behavior that is unavailable in bulk materials from a periodic unit cell structure with a specific geometry. However, such metamaterials can typically not be reconfigured once manufactured. Herein, the authors introduce shape morphing of a hydrogel metamaterial via spatio-selective integration of responsive actuating elements to reconfigure the mesoscale unit cell geometry to reach programmable auxeticity on the macroscale. Via thermal control, the unit cell angle of a honeycomb structure can be precisely programmed from 68° to 107°. This results in negative, zero, or positive Poisson's ratio under applied tensile strain. The geometrical reconfiguration with resulting programmable auxeticity is predicted and verified by finite element (FE) simulation. This concept of shape-morphing hydrogel metamaterials via the addition of actuating struts into otherwise passive architectures offers a new strategy for reconfigurable metamaterials and extends applications of hydrogels in general. It can be readily extended to other architectures and may find applications in mechanical computing as well as soft robotics.
Collapse
Affiliation(s)
- Oliver Skarsetz
- ABMS Lab – ActiveAdaptive and Autonomous Bioinspired MaterialsDepartment of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–14Mainz55128Germany
| | - Viacheslav Slesarenko
- Cluster of Excellence livMatS @ FIT — Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges‐Köhler‐Allee 105Freiburg im Breisgau79110Germany
| | - Andreas Walther
- ABMS Lab – ActiveAdaptive and Autonomous Bioinspired MaterialsDepartment of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–14Mainz55128Germany
- Cluster of Excellence livMatS @ FIT — Freiburg Center for Interactive Materials and Bioinspired TechnologiesUniversity of FreiburgGeorges‐Köhler‐Allee 105Freiburg im Breisgau79110Germany
| |
Collapse
|
5
|
Monti J, Concellón A, Dong R, Simmler M, Münchinger A, Huck C, Tegeder P, Nirschl H, Wegener M, Osuji CO, Blasco E. Two-Photon Laser Microprinting of Highly Ordered Nanoporous Materials Based on Hexagonal Columnar Liquid Crystals. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33746-33755. [PMID: 35849651 DOI: 10.1021/acsami.2c10106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanoporous materials relying on supramolecular liquid crystals (LCs) are excellent candidates for size- and charge-selective membranes. However, whether they can be manufactured using printing technologies remained unexplored so far. In this work, we develop a new approach for the fabrication of ordered nanoporous microstructures based on supramolecular LCs using two-photon laser printing. In particular, we employ photo-cross-linkable hydrogen-bonded complexes, that self-assemble into columnar hexagonal (Colh) mesophases, as the base of our printable photoresist. The presence of photopolymerizable groups in the periphery of the molecules enables the printability using a laser. We demonstrate the conservation of the Colh arrangement and of the adsorptive properties of the materials after laser microprinting, which highlights the potential of the approach for the fabrication of functional nanoporous structures with a defined geometry. This first example of printable Colh LC should open new opportunities for the fabrication of functional porous microdevices with potential application in catalysis, filtration, separation, or molecular recognition.
Collapse
Affiliation(s)
- Joël Monti
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
| | - Alberto Concellón
- Department of Chemistry, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States
| | - Ruiqi Dong
- Department of Chemical and Biomolecular Engineering, The University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Mira Simmler
- Institute of Mechanical Process Engineering and Mechanics (MVM), Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - Alexander Münchinger
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - Christian Huck
- Institute of Physical Chemistry, Heidelberg University, Heidelberg 69120, Germany
| | - Petra Tegeder
- Institute of Physical Chemistry, Heidelberg University, Heidelberg 69120, Germany
| | - Hermann Nirschl
- Institute of Mechanical Process Engineering and Mechanics (MVM), Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - Martin Wegener
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - Chinedum O Osuji
- Department of Chemical and Biomolecular Engineering, The University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Eva Blasco
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
- Center for Advanced Materials (CAM), Heidelberg University, Heidelberg 69120, Germany
- Organic Chemistry Institute, Heidelberg University, Hedelberg 69120, Germany
| |
Collapse
|
6
|
Precision Control of Programmable Actuation of Thermoresponsive Nanocomposite Hydrogels with Multilateral Engineering. Int J Mol Sci 2022; 23:ijms23095044. [PMID: 35563434 PMCID: PMC9103084 DOI: 10.3390/ijms23095044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 12/27/2022] Open
Abstract
Hydrogels capable of stimuli-responsive deformation are widely explored as intelligent actuators for diverse applications. It is still a significant challenge, however, to "program" these hydrogels to undergo highly specific and extensive shape changes with precision, because the mechanical properties and deformation mechanism of the hydrogels are inherently coupled. Herein, two engineering strategies are simultaneously employed to develop thermoresponsive poly(N-isopropyl acrylamide) (PNIPAm)-based hydrogels capable of programmable actuation. First, PNIPAm is copolymerized with poly(ethylene glycol) diacrylate (PEGDA) with varying molecular weights and concentrations. In addition, graphene oxide (GO) or reduced graphene oxide (rGO) is incorporated to generate nanocomposite hydrogels. These strategies combine to allow the refined control of mechanical and diffusional properties of hydrogels over a broad range, which also directly influences variable thermoresponsive actuation. It is expected that this comprehensive design principle can be applied to a wide range of hydrogels for programmable actuation.
Collapse
|
7
|
The Soft and High Actuation Response of Graphene Oxide/Gelatin Soft Gel. MATERIALS 2021; 14:ma14247553. [PMID: 34947149 PMCID: PMC8709113 DOI: 10.3390/ma14247553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/25/2022]
Abstract
The high actuation response of soft gel from a graphene oxide/gelatin composite was prepared as an alternative material in soft robotics applications. Graphene oxide (GO) was selected as the electroresponsive (ER) particle. GO was synthesized by modifying Hummer's method at various ratios of graphite (GP) to potassium permanganate (KMnO4). To study the effect of ER particles on electromechanical properties, GO was blended with gelatin hydrogel (GEL) at various concentrations. The electrical properties of the ER particles (GO and GP) and matrix (GEL) were measured. The capacitance (C), resistance (R), and dielectric constant of the GO/GEL composite were lower than those of the GO particles but higher than those of the GEL and GP/GEL composite at the given number of particles. The effects of external electric field strength and the distance between electrodes on the degree of bending and the dielectrophoresis force (Fd) were investigated. When the external electric field was applied, the composite bent toward electrode, because the electric field polarized the functional group of polymer molecules. Under applied 400 V/mm, the GO/GEL composite (5% w/w) showed the highest deflection angle (θ = 82.88°) and dielectrophoresis force (7.36 N). From the results, we conclude that the GO/GEL composite can be an alternative candidate material for electromechanical actuator applications.
Collapse
|
8
|
Khosravi H, Iannucci SM, Li S. Pneumatic Soft Actuators With Kirigami Skins. Front Robot AI 2021; 8:749051. [PMID: 34589523 PMCID: PMC8473908 DOI: 10.3389/frobt.2021.749051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
Soft pneumatic actuators have become indispensable for many robotic applications due to their reliability, safety, and design flexibility. However, the currently available actuator designs can be challenging to fabricate, requiring labor-intensive and time-consuming processes like reinforcing fiber wrapping and elastomer curing. To address this issue, we propose to use simple-to-fabricate kirigami skins-plastic sleeves with carefully arranged slit cuts-to construct pneumatic actuators with pre-programmable motion capabilities. Such kirigami skin, wrapped outside a cylindrical balloon, can transform the volumetric expansion from pneumatic pressure into anisotropic stretching and shearing, creating a combination of axial extension and twisting in the actuator. Moreover, the kirigami skin exhibits out-of-plane buckling near the slit cut, which enables high stretchability. To capture such complex deformations, we formulate and experimentally validates a new kinematics model to uncover the linkage between the kirigami cutting pattern design and the actuator's motion characteristics. This model uses a virtual fold and rigid-facet assumption to simplify the motion analysis without sacrificing accuracy. Moreover, we tested the pressure-stroke performance and elastoplastic behaviors of the kirigami-skinned actuator to establish an operation protocol for repeatable performance. Analytical and experimental parametric analysis shows that one can effectively pre-program the actuator's motion performance, with considerable freedom, simply by adjusting the angle and length of the slit cuts. The results of this study can establish the design and analysis framework for a new family of kirigami-skinned pneumatic actuators for many robotic applications.
Collapse
Affiliation(s)
- Hesameddin Khosravi
- Dynamic Matter Laboratory, Department of Mechanical Engineering, Clemson University, Clemson, SC, United States
| | - Steven M Iannucci
- Dynamic Matter Laboratory, Department of Mechanical Engineering, Clemson University, Clemson, SC, United States
| | - Suyi Li
- Dynamic Matter Laboratory, Department of Mechanical Engineering, Clemson University, Clemson, SC, United States
| |
Collapse
|
9
|
Decroly G, Raffoul R, Deslypere C, Leroy P, Van Hove L, Delchambre A, Lambert P. Optimization of Phase-Change Material-Elastomer Composite and Integration in Kirigami-Inspired Voxel-Based Actuators. Front Robot AI 2021; 8:672934. [PMID: 34041277 PMCID: PMC8141652 DOI: 10.3389/frobt.2021.672934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/12/2021] [Indexed: 11/18/2022] Open
Abstract
Phase-change material–elastomer composite (PCMEC) actuators are composed of a soft elastomer matrix embedding a phase-change fluid, typically ethanol, in microbubbles. When increasing the temperature, the phase change in each bubble induces a macroscopic expansion of the matrix. This class of actuators is promising for soft robotic applications because of their high energy density and actuation strain, and their low cost and easy manufacturing. However, several limitations must be addressed, such as the high actuation temperature and slow actuation speed. Moreover, the lack of a consistent design approach limits the possibility to build PCMEC-based soft robots able to achieve complex tasks. In this work, a new approach to manufacture PCMEC actuators with different fluid–elastomer combinations without altering the quality of the samples is proposed. The influence of the phase-change fluid and the elastomer on free elongation and bending is investigated. We demonstrate that choosing an appropriate fluid increases the actuation strain and speed, and decreases the actuation temperature compared with ethanol, allowing PCMECs to be used in close contact with the human body. Similarly, by using different elastomer materials, the actuator stiffness can be modified, and the experimental results showed that the curvature is roughly proportional to the inverse of Young’s modulus of the pure matrix. To demonstrate the potential of the optimized PCMECs, a kirigami-inspired voxel-based design approach is proposed. PCMEC cubes are molded and reinforced externally by paper. Cuts in the paper induce anisotropy into the structure. Elementary voxels deforming according to the basic kinematics (bending, torsion, elongation, compression and shear) are presented. The combination of these voxels into modular and reconfigurable structures could open new possibilities towards the design of flexible robots able to perform complex tasks.
Collapse
Affiliation(s)
- Gilles Decroly
- TIPs Dpt, Université Libre de Bruxelles, Brussels, Belgium.,BEAMS Dpt, Université Libre de Bruxelles, Brussels, Belgium
| | - Romain Raffoul
- TIPs Dpt, Université Libre de Bruxelles, Brussels, Belgium.,BEAMS Dpt, Université Libre de Bruxelles, Brussels, Belgium
| | - Clara Deslypere
- TIPs Dpt, Université Libre de Bruxelles, Brussels, Belgium.,BEAMS Dpt, Université Libre de Bruxelles, Brussels, Belgium
| | - Paul Leroy
- TIPs Dpt, Université Libre de Bruxelles, Brussels, Belgium.,BEAMS Dpt, Université Libre de Bruxelles, Brussels, Belgium
| | - Louis Van Hove
- TIPs Dpt, Université Libre de Bruxelles, Brussels, Belgium.,BEAMS Dpt, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Pierre Lambert
- TIPs Dpt, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|