1
|
Goo AC, Laubscher CA, Wajda DA, Sawicki JT. Preliminary Virtual Constraint-Based Control Evaluation on a Pediatric Lower-Limb Exoskeleton. Bioengineering (Basel) 2024; 11:590. [PMID: 38927826 PMCID: PMC11201092 DOI: 10.3390/bioengineering11060590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Pediatric gait rehabilitation and guidance strategies using robotic exoskeletons require a controller that encourages user volitional control and participation while guiding the wearer towards a stable gait cycle. Virtual constraint-based controllers have created stable gait cycles in bipedal robotic systems and have seen recent use in assistive exoskeletons. This paper evaluates a virtual constraint-based controller for pediatric gait guidance through comparison with a traditional time-dependent position tracking controller on a newly developed exoskeleton system. Walking experiments were performed with a healthy child subject wearing the exoskeleton under proportional-derivative control, virtual constraint-based control, and while unpowered. The participant questionnaires assessed the perceived exertion and controller usability measures, while sensors provided kinematic, control torque, and muscle activation data. The virtual constraint-based controller resulted in a gait similar to the proportional-derivative controlled gait but reduced the variability in the gait kinematics by 36.72% and 16.28% relative to unassisted gait in the hips and knees, respectively. The virtual constraint-based controller also used 35.89% and 4.44% less rms torque per gait cycle in the hips and knees, respectively. The user feedback indicated that the virtual constraint-based controller was intuitive and easy to utilize relative to the proportional-derivative controller. These results indicate that virtual constraint-based control has favorable characteristics for robot-assisted gait guidance.
Collapse
Affiliation(s)
- Anthony C. Goo
- Center for Rotating Machinery Dynamics and Control (RoMaDyC), Washkewicz College of Engineering, Cleveland State University, Cleveland, OH 44115, USA;
| | - Curt A. Laubscher
- Department of Robotics, Michigan Engineering, University of Michigan Ann Arbor, Ann Arbor, MI 48109, USA;
| | - Douglas A. Wajda
- Department of Health Sciences and Human Performance, College of Health, Cleveland State University, Cleveland, OH 44115, USA;
| | - Jerzy T. Sawicki
- Center for Rotating Machinery Dynamics and Control (RoMaDyC), Washkewicz College of Engineering, Cleveland State University, Cleveland, OH 44115, USA;
| |
Collapse
|
2
|
Human Factors Assessment of a Novel Pediatric Lower-Limb Exoskeleton. ROBOTICS 2023. [DOI: 10.3390/robotics12010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
While several lower-limb exoskeletons have been designed for adult patients, there remains a lack of pediatric-oriented devices. This paper presented a human factor assessment of an adjustable pediatric lower-limb exoskeleton for childhood gait assistance. The hip and knee exoskeleton uses an adjustable frame for compatibility with children 6–11 years old. This assessment evaluates the device’s comfort and ease of use through timed donning, doffing, and reconfiguration tasks. The able-bodied study participants donned the device in 6 min and 8 s, doffed it in 2 min and 29 s, and reconfigured it in 8 min and 23 s. The results of the timed trials suggest that the exoskeleton can be easily donned, doffed, and reconfigured to match the anthropometrics of pediatric users. A 6-min unpowered walking experiment was conducted while the child participant wore the exoskeletal device. Inspection of both the device and participant yielded no evidence of damage to either the device or wearer. Participant feedback on the device was positive with a system usability scale rating of 80/100. While minor improvements can be made to the adjustability indicators and padding placement, the results indicate the exoskeleton is suitable for further experimental evaluation through assistive control assessments.
Collapse
|
3
|
Frej D, Jaśkiewicz M. Comparison of Volunteers' Head Displacement with Computer Simulation-Crash Test with Low Speed of 20 km/h. SENSORS (BASEL, SWITZERLAND) 2022; 22:9720. [PMID: 36560089 PMCID: PMC9781070 DOI: 10.3390/s22249720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/30/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Recently, the automotive industry has used simulation programs much more often than experimental research. Computer simulations are more and more often used due to the repeatability of simulation conditions and the possibility of making modifications in simulation objects. Experimental and simulation studies carried out are aimed at developing a model of a simulation dummy adapted to both frontal and rear crash tests, taking into account changes in the moment of resistance in individual joints. The main purpose of the article is to reproduce a real crash test at a low speed of 20 km/h in a simulation program. For this purpose, a series of experimental crash tests with the participation of volunteers was carried out, and then a crash test with a dummy was simulated in the MSC ADAMS program. The experimental studies involved 100 volunteers who were divided into three percentile groups (C5, C50, C95). With the help of force sensors and a high-speed camera, crash tests of volunteers were recorded. The collected data from the force sensors made it possible to map the force in the seat belts. For low-speed crash tests, the displacement and acceleration of individual body parts of the dummy and volunteers can be measured using vision systems. The article identified head displacements of volunteers in the TEMA program based on a video analysis of a crash test film with a frequency of up to 2500 frames per second. The displacement of the simulation dummy's head in the MSC ADAMS program in the considered crash time interval from 0.0 to 0.4 s for all three percentile groups coincided with the head displacement of the volunteers during the experimental crash test.
Collapse
|
4
|
Goo A, Laubscher CA, Wiebrecht JJ, Farris RJ, Sawicki JT. Hybrid Zero Dynamics Control for Gait Guidance of a Novel Adjustable Pediatric Lower-Limb Exoskeleton. Bioengineering (Basel) 2022; 9:208. [PMID: 35621486 PMCID: PMC9137926 DOI: 10.3390/bioengineering9050208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
Exoskeleton technology has undergone significant developments for the adult population but is still lacking for the pediatric population. This paper presents the design of a hip-knee exoskeleton for children 6 to 11 years old with gait abnormalities. The actuators are housed in an adjustable exoskeleton frame where the thigh part can adjust in length and the hip cradle can adjust in the medial-lateral and posterior-anterior directions concurrently. Proper control of exoskeletons to follow nominal healthy gait patterns in a time-invariant manner is important for ease of use and user acceptance. In this paper, a hybrid zero dynamics (HZD) controller was designed for gait guidance by defining the zero dynamics manifold to resemble healthy gait patterns. HZD control utilizes a time-invariant feedback controller to create dynamically stable gaits in robotic systems with hybrid models containing both discrete and continuous dynamics. The effectiveness of the controller on the novel pediatric exoskeleton was demonstrated via simulation. The presented preliminary results suggest that HZD control provides a viable method to control the pediatric exoskeleton for gait guidance.
Collapse
Affiliation(s)
- Anthony Goo
- Department of Mechanical Engineering, Washkewicz College of Engineering, Cleveland State University, Cleveland, OH 44115, USA
| | - Curt A Laubscher
- Department of Mechanical Engineering, Washkewicz College of Engineering, Cleveland State University, Cleveland, OH 44115, USA
| | - Jason J Wiebrecht
- Department of Mechanical Engineering, Washkewicz College of Engineering, Cleveland State University, Cleveland, OH 44115, USA
| | - Ryan J Farris
- Department of Engineering, School of Science, Engineering, and Health, Messiah University, Mechanicsburg, PA 17055, USA
| | - Jerzy T Sawicki
- Department of Mechanical Engineering, Washkewicz College of Engineering, Cleveland State University, Cleveland, OH 44115, USA
| |
Collapse
|
5
|
Laubscher CA, Goo A, Farris RJ, Sawicki JT. Hybrid Impedance-Sliding Mode Switching Control of the Indego Explorer Lower-Limb Exoskeleton in Able-Bodied Walking. J INTELL ROBOT SYST 2022. [DOI: 10.1007/s10846-022-01583-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
6
|
A Survey on Design and Control of Lower Extremity Exoskeletons for Bipedal Walking. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Exoskeleton robots are electrically, pneumatically, or hydraulically actuated devices that externally support the bones and cartilage of the human body while trying to mimic the human movement capabilities and augment muscle power. The lower extremity exoskeleton device may support specific human joints such as hip, knee, and ankle, or provide support to carry and balance the weight of the full upper body. Their assistive functionality for physically-abled and disabled humans is demanded in medical, industrial, military, safety applications, and other related fields. The vision of humans walking with an exoskeleton without external support is the prospect of the robotics and artificial intelligence working groups. This paper presents a survey on the design and control of lower extremity exoskeletons for bipedal walking. First, a historical view on the development of walking exoskeletons is presented and various lower body exoskeleton designs are categorized in different application areas. Then, these designs are studied from design, modeling, and control viewpoints. Finally, a discussion on future research directions is provided.
Collapse
|
7
|
Investigation of Hysteresis Effect in Torque Performance for a Magnetorheological Brake in Adaptive Knee Orthosis. ACTUATORS 2021. [DOI: 10.3390/act10100271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Semi-active knee orthosis (SAKO) is a kind of wearable lower-limb exoskeleton that uses actuators to support the regular biomechanical functions. It is much better than conventional knee orthosis (CKO) devices because of its high torque to volume ratio (TVR) and low mass. Magnetorheological (MR) brake is one of the smart actuators that can be used as an active resistance device in SAKO. It has advantages of fast response, low power consumption, and low vibration operation. This smart brake also has wide applications in the robotic and automotive industries. However, the electromagnetic setup in MR brakes has a hysteresis problem. This paper aims to turn this hysteresis problem into an advantage to save the power consumption of MR brake. Since the SAKO needs precise torque control, this research studied the hysteresis effect on the torque performance of MR brake. A less energy-consuming PWM actuation signal is proposed to activate the MR brake. The effects of frequency and duty cycle of PWM actuation signal on MR brake performance are also investigated. The electromagnetic (EM) and mechanical models of the MR brake were developed to simulate performance. Initial validation of these models is done by simulating the MR brake model with the DC actuation signal in finite element analysis software. For the final validation, the model simulation results are compared with experimental results. The factors affecting the steady torque and the response time of the MR brake are studied to find the optimal frequency and duty cycle for the applied PWM signal. This study revealed that the proposed new PWM actuation signal with a 5 kHz frequency and 60% duty cycle can power the MR brake to maintain steady torque. By turning hysteresis into an advantage, it saves 40% power consumption of MR brake compared to DC signal.
Collapse
|
8
|
Abstract
The development of powered assistive devices that integrate exoskeletal motors and muscle activation for gait restoration benefits from actuators with low backdrive torque. Such an approach enables motors to assist as needed while maximizing the joint torque muscles, contributing to movement, and facilitating ballistic motions instead of overcoming passive dynamics. Two electromechanical actuators were developed to determine the effect of two candidate transmission implementations for an exoskeletal joint. To differentiate the transmission effects, the devices utilized the same motor and similar gearing. One actuator included a commercially available harmonic drive transmission while the other incorporated a custom designed two-stage planetary transmission. Passive resistance and mechanical efficiency were determined based on isometric torque and passive resistance. The planetary-based actuator outperformed the harmonic-based actuator in all tests and would be more suitable for hybrid exoskeletons.
Collapse
|
9
|
Abstract
The article presents a model of an anthropometric dummy designed for low velocity crash tests, designed in ADAMS. The model consists of rigid bodies connected with special joints with appropriately selected stiffness and damping. The simulation dummy has the appropriate dimensions, shape, and mass of individual elements to suit a 50 percentile male. The purpose of this article is to draw attention to low speed crash tests. Current dummies such as THOR and Hybrid III are used for crash tests at speeds above 40 km/h. In contrast, the low-speed test dummy currently used is the BioRID-II dummy, which is mainly adapted to the whiplash test at speeds of up to 16km/h. Thus, it can be seen that there is a gap in the use of crash test dummies. There are no low-speed dummies for side and front crash tests, and there are no dummies for rear crash tests between 16 km/h and 25 km/h. Which corresponds to a collision of a passenger vehicle with a hard obstacle at a speed of 30 km/h. Therefore, in collisions with low speeds of 20 km/h, the splash airbag will probably not be activated. The article contains the results of a computer simulation at a speed of 20 km/h vehicle out in the ADAMS program. These results were compared with the experimental results of the laboratory crash test using volunteers and the Hybrid III dummy. The simulation results are the basis for building the physical model dummy. The simulation aims to reflect the greatest possible compliance of the movements of individual parts of the human body during a collision at low speed.
Collapse
|