1
|
Stackhouse T, Bass A, Waliullah S, Ali E, Bahri BA, Martinez-Espinoza AD. Probe-Based Loop-Mediated Isothermal Amplification Assay for Rapid Detection of Two Clarireedia spp., the Causal Agent of Dollar Spot of Turfgrass. PLANT DISEASE 2024; 108:3115-3122. [PMID: 38885023 DOI: 10.1094/pdis-12-23-2608-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Dollar spot is a major fungal disease affecting turfgrass worldwide and can quickly destroy turfgrass swards. An assimilating probe-based loop-mediated isothermal amplification (LAMP) assay was developed to detect Clarireedia monteithiana and C. jacksonii, the causal agents of dollar spot within the continental United States. Five LAMP primers were designed to target the calmodulin gene with the addition of a 6-carboxyl-fluorescein florescent assimilating probe, and the temperature amplification was optimized for C. jacksonii and C. monteithiana identification. The minimum amount of purified DNA needed for detection was 0.05 ng μl-1. Specificity assays against host DNA and other turfgrass pathogens were negative. Successful LAMP amplification was also observed for dollar spot-infected turfgrass field samples. Further, a DNA extraction technique via rapid heat-chill cycles and visualization of LAMP results via a florescent flashlight was developed and adapted for fast, simple, and reliable detection in 1.25 h. This assimilating probe-based LAMP assay has proved successful as a rapid, sensitive, and specific method for the detection of C. monteithiana and C. jacksonii in pure cultures and from symptomatic turfgrass leaves blades. The assay represents a promising technology to be used in the field for on-site, point-of-care pathogen detection.
Collapse
Affiliation(s)
- Tammy Stackhouse
- Department of Plant Pathology, University of Georgia, Athens, GA 30602
| | - Anna Bass
- Department of Plant Pathology, University of Georgia, Athens, GA 30602
| | - Sumyya Waliullah
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793
| | - Emran Ali
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793
| | - Bochra A Bahri
- Department of Plant Pathology, University of Georgia, Griffin, GA 30223
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia Griffin Campus, Griffin, GA 30224
| | | |
Collapse
|
2
|
Zhang H, Liu J, Dong Y, Hu J, Lamour K, Yang Z. A one-step multiplex PCR assay for the detection and differentiation of four species of Clarireedia causing dollar spot on turfgrass. PEST MANAGEMENT SCIENCE 2023; 79:1069-1077. [PMID: 36334001 DOI: 10.1002/ps.7276] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/28/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Dollar spot (DS) is one of the most destructive and economically important diseases of cool- and warm-season turfgrasses worldwide. A total of six species causing DS disease in the genus Clarireedia have been described, and four of them have been reported to be distributed countrywide in China. Identification of different species of Clarireedia is a prerequisite for the effective management of DS disease. RESULTS Here we report a novel polymerase chain reaction (PCR)-based method for the detection and differentiation of the four species of Clarireedia associated with DS on turfgrass in China: C. jacksonii, C. paspali, C. monteithiana and C. hainanense. Species-specific genes were identified for each species by comparative genomics analysis. Four primer pairs were designed and mixed to amplify species-specific PCR fragments with differential sizes for the four species of Clarireedia in a single multiplex PCR assay. No PCR products were generated from the DNA templates of other common fungal pathogens associated with multiple turfgrass diseases. The multiplex PCR method developed can be used for the rapid and accurate detection and differentiation of the four species of Clarireedia from pure cultures as well as from infected turfgrass blades with DS symptoms. CONCLUSION The study developed a one-step multiplex PCR assay for the detection and differentiation of four species of Clarireedia causing DS on turfgrass in China, which will have important implications for DS management in China and worldwide. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huangwei Zhang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Jun Liu
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Yinglu Dong
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Jian Hu
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Kurt Lamour
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA
| | - Zhimin Yang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
3
|
Bahri BA, Parvathaneni RK, Spratling WT, Saxena H, Sapkota S, Raymer PL, Martinez-Espinoza AD. Whole genome sequencing of Clarireedia aff. paspali reveals potential pathogenesis factors in Clarireedia species, causal agents of dollar spot in turfgrass. Front Genet 2023; 13:1033437. [PMID: 36685867 PMCID: PMC9849252 DOI: 10.3389/fgene.2022.1033437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/21/2022] [Indexed: 01/06/2023] Open
Abstract
Dollar spot is one of the most damaging diseases in turfgrass, reducing its quality and playability. Two species, Clarireedia monteithiana and C. jacksonii (formerly Sclerotinia homoeocarpa) have been reported so far in the United States To study the Clarireedia genome, two isolates H2 and H3, sampled from seashore paspalum in Hawaii in 2019 were sequenced via Illumina paired-end sequencing by synthesis technology and PacBio SMRT sequencing. Both isolates were identified as C. aff. paspali, a novel species in the United States Using short and long reads, C. aff. paspali H3 contained 193 contigs with 48.6 Mbp and presented the most completed assembly and annotation among Clarireedia species. Out of the 13,428 protein models from AUGUSTUS, 349 cytoplasmic effectors and 13 apoplastic effectors were identified by EffectorP. To further decipher Clarireedia pathogenicity, C. aff. paspali genomes (H2 and H3), as well as available C. jacksonii (LWC-10 and HRI11), C. monteithiana (DRR09 and RB-19) genomes were screened for fifty-four pathogenesis determinants, previously identified in S. sclerotiorum. Seventeen orthologs of pathogenicity genes have been identified in Clarireedia species involved in oxalic acid production (pac1, nox1), mitogen-activated protein kinase cascade (pka1, smk3, ste12), appressorium formation (caf1, pks13, ams2, rgb1, rhs1) and glycolytic pathway (gpd). Within these genes, 366 species-specific SNPs were recorded between Clarireedia species; twenty-eight were non-synonymous and non-conservative. The predicted protein structure of six of these genes showed superimposition of the models among Clarireedia spp. The genomic variations revealed here could potentially lead to differences in pathogenesis and other physiological functions among Clarireedia species.
Collapse
Affiliation(s)
- Bochra Amina Bahri
- Department of Plant Pathology, University of Georgia, Griffin, GA, United States,Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Griffin, GA, United States,*Correspondence: Bochra Amina Bahri,
| | - Rajiv Krishna Parvathaneni
- Department of Plant Pathology, University of Georgia, Griffin, GA, United States,Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Griffin, GA, United States
| | | | - Harshita Saxena
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Griffin, GA, United States
| | - Suraj Sapkota
- Department of Plant Pathology, University of Georgia, Griffin, GA, United States
| | - Paul L. Raymer
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Griffin, GA, United States,Department of Crop and Soil Sciences, University of Georgia, Griffin, GA, United States
| | | |
Collapse
|
4
|
Zhang H, Dong Y, Zhou Y, Hu J, Lamour K, Yang Z. Clarireedia hainanense: A New Species Is Associated with Dollar Spot of Turfgrass in Hainan, China. PLANT DISEASE 2022; 106:996-1002. [PMID: 34698519 DOI: 10.1094/pdis-08-21-1853-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The genus Clarireedia contains multiple species causing dollar spot (DS) on turfgrass worldwide. In November 2020, 119 Clarireedia isolates were obtained from symptomatic seashore paspalum at golf courses in Hainan province and identified to species level based on partial sequence of the internal transcribed spacer (ITS) region. A total of 45 and 22 isolates were identified as C. paspali and C. monteithiana, respectively; the remaining 52 isolates defined a new clade. Isolates from this clade were further selected for phylogenetic, morphological, and biological analyses. Maximum likelihood and Bayesian methods were implemented to obtain phylogenetic trees for partial sequences of the ITS, EF-1α, and McM7 genes. The selected isolates consistently fell into a distinct, well-supported clade within Clarireedia. Morphological and biological characteristics were observed among the different species in Clarireedia. Altogether, this study described a new species, Clarireedia hainanense, which has widespread distribution in Hainan, China. These findings may have important implications for the management of DS disease.
Collapse
Affiliation(s)
- Huangwei Zhang
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Yinglu Dong
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Yuxin Zhou
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, P. R. China
| | - Jian Hu
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Kurt Lamour
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Zhimin Yang
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| |
Collapse
|
5
|
Sapkota S, Catching KE, Raymer PL, Martinez-Espinoza AD, Bahri BA. New Approaches to an Old Problem: Dollar Spot of Turfgrass. PHYTOPATHOLOGY 2022; 112:469-480. [PMID: 34406790 DOI: 10.1094/phyto-11-20-0505-rvw] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dollar spot, caused by fungal pathogens Clarireedia spp. (formerly Sclerotinia homoeocarpa), is the most common and widely distributed disease of turfgrass worldwide. It can drastically reduce the quality of turfgrass species and affect their aesthetic value and playability. Management of dollar spot typically includes a costly program of multiple application of fungicides within a growing season. Consequently, there have been reported cases of fungicide resistance in populations of Clarireedia spp. Host resistance could be an important component of dollar spot management; however, this approach has been hampered by the lack of sources of resistance because nearly all known warm- and cool-season turfgrass species are susceptible. With the recent advancement in genome sequencing technologies, studies on pathogen genomics and host-pathogen interactions are emerging with the hope of revealing candidate resistance genes in turfgrass and genes for virulence and pathogenicity in Clarireedia spp. Large-scale screening of turfgrass germplasm and quantitative trait locus (QTL) analysis for dollar spot resistance are important for resistance breeding, but only a handful of such studies have been conducted to date. This review summarizes currently available information on the dollar spot pathosystem, taxonomy, pathogen genomics, host-pathogen interaction, genetics of resistance, and QTL mapping and also provides some thoughts for future research prospects to better manage this disease.
Collapse
Affiliation(s)
- Suraj Sapkota
- Department of Plant Pathology, University of Georgia, Griffin, GA 30223
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Griffin, GA 30223
| | - Katherine E Catching
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Griffin, GA 30223
| | - Paul L Raymer
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Griffin, GA 30223
- Department of Crop and Soil Science, University of Georgia, Griffin, GA 30223
| | | | - Bochra A Bahri
- Department of Plant Pathology, University of Georgia, Griffin, GA 30223
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Griffin, GA 30223
| |
Collapse
|