1
|
Moulick D, Samanta S, Sarkar S, Mukherjee A, Pattnaik BK, Saha S, Awasthi JP, Bhowmick S, Ghosh D, Samal AC, Mahanta S, Mazumder MK, Choudhury S, Bramhachari K, Biswas JK, Santra SC. Arsenic contamination, impact and mitigation strategies in rice agro-environment: An inclusive insight. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149477. [PMID: 34426348 DOI: 10.1016/j.scitotenv.2021.149477] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/15/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) contamination and its adverse consequences on rice agroecosystem are well known. Rice has the credit to feed more than 50% of the world population but concurrently, rice accumulates a substantial amount of As, thereby compromising food security. The gravity of the situation lays in the fact that the population in theAs uncontaminated areas may be accidentally exposed to toxic levels of As from rice consumption. In this review, we are trying to summarize the documents on the impact of As contamination and phytotoxicity in past two decades. The unique feature of this attempt is wide spectrum coverages of topics, and that makes it truly an interdisciplinary review. Aprat from the behaviour of As in rice field soil, we have documented the cellular and molecular response of rice plant upon exposure to As. The potential of various mitigation strategies with particular emphasis on using biochar, seed priming technology, irrigation management, transgenic variety development and other agronomic methods have been critically explored. The review attempts to give a comprehensive and multidiciplinary insight into the behaviour of As in Paddy -Water - Soil - Plate prospective from molecular to post-harvest phase. From the comprehensive literature review, we may conclude that considerable emphasis on rice grain, nutritional and anti-nutritional components, and grain quality traits under arsenic stress condition is yet to be given. Besides these, some emerging mitigation options like seed priming technology, adoption of nanotechnological strategies, applications of biochar should be fortified in large scale without interfering with the proper use of biodiversity.
Collapse
Affiliation(s)
- Debojyoti Moulick
- Plant Stress Biology and Metabolomics Laboratory Central Instrumentation Laboratory (CIL), Assam University, Silchar 788 011, India.
| | - Suman Samanta
- Division of Agricultural Physics, Indian Agricultural Research Institute, Pusa, New Delhi 110012, India.
| | - Sukamal Sarkar
- Department of Agronomy, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia 741252, West Bengal, India.
| | - Arkabanee Mukherjee
- Indian Institute of Tropical Meteorology, Dr Homi Bhabha Rd, Panchawati, Pashan, Pune, Maharashtra 411008, India.
| | - Binaya Kumar Pattnaik
- Symbiosis Institute of Geoinformatics, Symbiosis International (Deemed University), Pune, Maharashtra, India.
| | - Saikat Saha
- Nadia Krishi Vigyan Kendra, Bidhan Chandra Krishi Viswavidyalaya, Gayeshpur, Nadia 741234, West Bengal, India.
| | - Jay Prakash Awasthi
- Department of Botany, Government College Lamta, Balaghat, Madhya Pradesh 481551, India.
| | - Subhamoy Bhowmick
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India.
| | - Dibakar Ghosh
- Division of Agronomy, ICAR-Indian Institute of Water Management, Bhubaneswar 751023, Odisha, India.
| | - Alok Chandra Samal
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, India.
| | - Subrata Mahanta
- Department of Chemistry, NIT Jamshedpur, Adityapur, Jamshedpur, Jharkhand 831014, India.
| | | | - Shuvasish Choudhury
- Plant Stress Biology and Metabolomics Laboratory Central Instrumentation Laboratory (CIL), Assam University, Silchar 788 011, India.
| | - Koushik Bramhachari
- Department of Agronomy, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia 741252, West Bengal, India.
| | - Jayanta Kumar Biswas
- Department of Ecological Studies and International Centre for Ecological Engineering, University of Kalyani, Kalyani, West Bengal, India.
| | - Subhas Chandra Santra
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, India.
| |
Collapse
|
2
|
Lee YS, Kim MS, Wee J, Min HG, Kim JG, Cho K. Effect of bioavailable arsenic fractions on the collembolan community in an old abandoned mine waste. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:3953-3966. [PMID: 33768350 DOI: 10.1007/s10653-021-00895-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/14/2021] [Indexed: 06/12/2023]
Abstract
Mine waste from abandoned mines poses a risk to soil ecosystems due to the dispersion of arsenic (As) in the mine waste to the nearby soil environment. Because the bioavailability of As varies depending on the As chemical fraction and exposure conditions, chemical assessment of As fractions in soil around mine waste is essential to understand their impact on soil ecosystem. Here, six sites around the mine waste were selected for investigating toxic effects of As-contaminant soil on Collembola community. To measure the As chemical fraction in soil and bioavailability, Wenzel sequential extraction employed. Meanwhile, the collembolans that live in each sampling site were identified at the species level, and the characteristics and composition of the collembola community were investigated. The mobility fraction (F1 + F2 + F3; MF) was related to the risk to the collembolan community, and the adverse impact of high MF appeared to lead to a decrease in abundance, richness, and Shannon index. According to non-metric multidimensional scaling analysis, F1, F2, F3, and pH were shown as the significant factor explaining the NMDS space. Especially, the sampling site with the highest concentration of F3 showed statistically different species composition from the other sites. In the case of As-contaminated soil around the old mine waste, the toxic effects of the remaining F3 in soil, as well as that of F1 and F2, should be fully considered. This study suggested that collembolan community could be used for understanding the impact of bioavailable As fraction in the old abandoned mine area.
Collapse
Affiliation(s)
- Yun-Sik Lee
- O-Jeong Resilience Institute, Korea University, Seoul, 02841, Republic of Korea
| | - Min-Suk Kim
- O-Jeong Resilience Institute, Korea University, Seoul, 02841, Republic of Korea
| | - June Wee
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyun-Gi Min
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jeong-Gyu Kim
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Kijong Cho
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
3
|
Kim MS, Lee SH, Kim JG. Evaluation of factors affecting arsenic uptake by Brassica juncea in alkali soil after biochar application using partial least squares path modeling (PLS-PM). CHEMOSPHERE 2021; 275:130095. [PMID: 33662718 DOI: 10.1016/j.chemosphere.2021.130095] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Biochar application to As-contaminated soil can alter various soil chemical properties, and it can affect available As, plant As uptake, and As phytotoxicity. Increased dissolved organic carbon (DOC) and P released from biochar affect As behavior in the soil system. In this study, we evaluated the effect of biochar application on the chemical properties of soil and phytotoxicity in Brassica juncea using correlation analysis and partial least squares path modeling (PLS-PM). Biochar application increased electrical conductivity (EC), DOC, available P and available As. However, the increased available As did not significantly affect As uptake by B. juncea due to the decrease in the relative ratio and effect of available As with increase in available P derived from biochar. Moreover, biochar application negatively affected soil chemical properties (pH, EC, DOC, available P, and available As) and As uptake by B. juncea. Therefore, correlation analysis and PLS-PM analysis are useful tools to interpret the interactions among influencing factors in the soil-plant system. An approach at the equivalent molecular level rather than concentration should be adopted in future studies.
Collapse
Affiliation(s)
- Min-Suk Kim
- OJEong Resilience Institute, Korea University, Seoul, 02841, Republic of Korea
| | - Sang-Hwan Lee
- Gyeongin Regional Office, Mine Reclamation Corporation, Seoul, 03151, Republic of Korea
| | - Jeong-Gyu Kim
- OJEong Resilience Institute, Korea University, Seoul, 02841, Republic of Korea; Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
4
|
Assessment of Fraction and Mobility of Arsenic in Soil Near the Mine Waste Dam. SUSTAINABILITY 2020. [DOI: 10.3390/su12041480] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Arsenic (As) contamination in abandoned mining areas has been of concern in Korea; hence, the reclamation and restoration of these areas must be conducted. Since large contaminated areas have not been restored yet, post management of restoration sites would be insufficient. The aim of this study was to monitor the pollution of environments near the waste dam in mining areas and to assess the fraction and mobility of As. Chemical assessment was conducted using sequential extraction and single extraction methods [Mehlich-3, 1N HCl, the simple bioavailability extraction test (SBET), and the synthetic precipitation leaching procedure (SPLP)], whereas biological assessment was conducted with a bok choy (Brassica campestris L. ssp. chinensis Jusl.) cultivation experiment. The results showed that the waste rock soil, forest soil, and sediments near the dam were contaminated with As. As a result of sequential extraction, most of the As in the soil of the upper part of the dam were observed to be tightly adsorbed (well-crystallized hydrous metal oxides and residual phases), whereas As in the forest soil of the lower part of the dam were observed to be relatively weakly bound (amorphous and poorly-crystallized hydrous metal oxides). These results show that As could be re-dissolved from secondary contaminated forest soil and spread to nearby environments. For the sustainable management of soil environment, an assessment of the fraction and mobility of As coupled with continuous monitoring are required.
Collapse
|