1
|
Giorio P, Sellami MH. Polyphasic OKJIP Chlorophyll a Fluorescence Transient in a Landrace and a Commercial Cultivar of Sweet Pepper ( Capsicum annuum, L.) under Long-Term Salt Stress. PLANTS 2021; 10:plants10050887. [PMID: 33924904 PMCID: PMC8145502 DOI: 10.3390/plants10050887] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 11/16/2022]
Abstract
In a soilless long-term salt-stress experiment, we tested the differences between the commercial sweet pepper cultivar “Quadrato d’Asti” and the landrace “Cazzone Giallo” in the structure and function of PSII through the JIP test analysis of the fast chlorophyll fluorescence transients (OKJIP). Salt stress inactivated the oxygen-evolving complex. Performance index detected the stress earlier than the maximum quantum yield of PSII, which remarkably decreased in the long term. The detrimental effects of salinity on the oxygen evolving-complex, the trapping of light energy in PSII, and delivering in the electron transport chain occurred earlier and more in the landrace than the cultivar. Performance indexes decreased earlier than the maximum quantum yield of PSII. Stress-induced inactivation of PSII reaction centers reached 22% in the cultivar and 45% in the landrace. The resulted heat dissipation had the trade-off of a correspondent reduced energy flow per sample leaf area, thus an impaired potential carbon fixation. These results corroborate the reported higher tolerance to salt stress of the commercial cultivar than the landrace in terms of yield. PSII was more affected than PSI, which functionality recovered in the late of trial, especially in the cultivar, possibly due to heat dissipation mechanisms. This study gives valuable information for breeding programs aiming to improve tolerance in salt stress sensitive sweet pepper genotypes.
Collapse
|
2
|
Salinity Duration Differently Modulates Physiological Parameters and Metabolites Profile in Roots of Two Contrasting Barley Genotypes. PLANTS 2021; 10:plants10020307. [PMID: 33562862 PMCID: PMC7914899 DOI: 10.3390/plants10020307] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023]
Abstract
Hordeum maritimum With. is a wild salt tolerant cereal present in the saline depressions of the Eastern Tunisia, where it significantly contributes to the annual biomass production. In a previous study on shoot tissues it was shown that this species withstands with high salinity at the seedling stage restricting the sodium entry into shoot and modulating over time the leaf synthesis of organic osmolytes for osmotic adjustment. However, the tolerance strategy mechanisms of this plant at root level have not yet been investigated. The current research aimed at elucidating the morphological, physiological and biochemical changes occurring at root level in H. maritimum and in the salt sensitive cultivar Hordeum vulgare L. cv. Lamsi during five-weeks extended salinity (200 mM NaCl), salt removal after two weeks of salinity and non-salt control. H. maritimum since the first phases of salinity was able to compartmentalize higher amounts of sodium in the roots compared to the other cultivar, avoiding transferring it to shoot and impairing photosynthetic metabolism. This allowed the roots of wild plants to receive recent photosynthates from leaves, gaining from them energy and carbon skeletons to compartmentalize toxic ions in the vacuoles, synthesize and accumulate organic osmolytes, control ion and water homeostasis and re-establish the ability of root to grow. H. vulgare was also able to accumulate compatible osmolytes but only in the first weeks of salinity, while soon after the roots stopped up taking potassium and growing. In the last week of salinity stress, the wild species further increased the root to shoot ratio to enhance the root retention of toxic ions and consequently delaying the damages both to shoot and root. This delay of few weeks in showing the symptoms of stress may be pivotal for enabling the survival of the wild species when soil salinity is transient and not permanent.
Collapse
|
3
|
Physiological and Nutraceutical Quality of Green and Red Pigmented Lettuce in Response to NaCl Concentration in Two Successive Harvests. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10091358] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nutritional eustress such as salinity or nutrient stress applied in soilless systems, is a convenient pre-harvest factor efficient in modulating the phytochemical components of horticultural crops, by triggering defensive mechanisms and accumulating plant secondary metabolites in plants tissues. Nevertheless, genetic material (cultivars with different pigmentation) dictates lettuce metabolites and physiological response to extrinsic eustress, with red leaf cultivars being highly nutrient packed notwithstanding the stress. Product quality can be meliorated equally by applying several cuts, a practice proven to increase bioactive compounds accumulation. In this study, we analyzed the effects of four salinity levels (1, 10, 20 and 30 mM NaCl) on green and red pigmented Salad Bowl lettuce (Lactuca sativa L. var. acephala) in two successive harvests cultivated in a floating raft system. The morphological parameters, mineral composition, leaf gas exchanges, bioactive compounds, and antioxidant activity of both cultivars were assessed. The green cultivar exhibited superior crop productivity but was more prone to salinity effect than the red cultivar. Irrespective of cultivar and cut order, the net photosynthesis decreased with increasing salinity in the nutrient solution. The second cut incurred higher dry biomass, greater accumulation of most minerals and higher photosynthetic activity. In red lettuce, 20 mM NaCl proved adequate eustress to increase phytonutrients and beneficial minerals (K, Ca, and Mg) with minimal loss of yield. Mild salinity and sequential harvest have proven effective pre-harvest tools in positively modulating the quality of lettuce. Eustress interaction with genotype was demonstrated as a promising field for future breeding programs targeting select genotypes for agronomic application of eustress to improve the nutraceutical value of vegetable crops.
Collapse
|
4
|
Giorio P, Cirillo V, Caramante M, Oliva M, Guida G, Venezia A, Grillo S, Maggio A, Albrizio R. Physiological Basis of Salt Stress Tolerance in a Landrace and a Commercial Variety of Sweet Pepper ( Capsicum annuum L.). PLANTS 2020; 9:plants9060795. [PMID: 32630481 PMCID: PMC7356216 DOI: 10.3390/plants9060795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 01/09/2023]
Abstract
Salt stress is one of the most impactful abiotic stresses that plants must cope with. Plants’ ability to tolerate salt stress relies on multiple mechanisms, which are associated with biomass and yield reductions. Sweet pepper is a salt-sensitive crop that in Mediterranean regions can be exposed to salt build-up in the root zone due to irrigation. Understanding the physiological mechanisms that plants activate to adapt to soil salinization is essential to develop breeding programs and agricultural practices that counteract this phenomenon and ultimately minimize yield reductions. With this aim, the physiological and productive performances of Quadrato D’Asti, a common commercial sweet pepper cultivar in Italy, and Cazzone Giallo, a landrace of the Campania region (Italy), were compared under different salt stress treatments. Quadrato D’Asti had higher tolerance to salt stress when compared to Cazzone Giallo in terms of yield, which was associated with higher leaf biomass vs. fruit ratio in the former. Ion accumulation and profiling between the two genoptypes revealed that Quadrato D’Asti was more efficient at excluding chloride from green tissues, allowing the maintenance of photosystem functionality under stress. In contrast, Cazzone Giallo seemed to compartmentalize most sodium in the stem. While sodium accumulation in the stems has been shown to protect shoots from sodium toxicity, in pepper and/or in the specific experimental conditions imposed, this strategy was less efficient than chloride exclusion for salt stress tolerance.
Collapse
Affiliation(s)
- Pasquale Giorio
- National Research Council of Italy, Institute for Mediterranean Agricultural and Forestry Systems (CNR-ISAFOM), Ercolano, 80056 Naples, Italy; (P.G.); (M.O.); (G.G.); (R.A.)
| | - Valerio Cirillo
- Department of Agricultural Science, University of Napoli Federico II, Portici, 80055 Naples, Italy;
- Correspondence:
| | - Martina Caramante
- Council for Agricultural Research and Economics, Research Centre for Vegetable and Ornamental Crops (CREA-OF), Pontecagnano, 84098 Salerno, Italy; (M.C.); (A.V.)
| | - Marco Oliva
- National Research Council of Italy, Institute for Mediterranean Agricultural and Forestry Systems (CNR-ISAFOM), Ercolano, 80056 Naples, Italy; (P.G.); (M.O.); (G.G.); (R.A.)
| | - Gianpiero Guida
- National Research Council of Italy, Institute for Mediterranean Agricultural and Forestry Systems (CNR-ISAFOM), Ercolano, 80056 Naples, Italy; (P.G.); (M.O.); (G.G.); (R.A.)
| | - Accursio Venezia
- Council for Agricultural Research and Economics, Research Centre for Vegetable and Ornamental Crops (CREA-OF), Pontecagnano, 84098 Salerno, Italy; (M.C.); (A.V.)
| | - Stefania Grillo
- National Research Council of Italy, Institute of Biosciences and Bioresources (CNR-IBBR), Research Division Portici, 80055 Naples, Italy;
| | - Albino Maggio
- Department of Agricultural Science, University of Napoli Federico II, Portici, 80055 Naples, Italy;
| | - Rossella Albrizio
- National Research Council of Italy, Institute for Mediterranean Agricultural and Forestry Systems (CNR-ISAFOM), Ercolano, 80056 Naples, Italy; (P.G.); (M.O.); (G.G.); (R.A.)
| |
Collapse
|
5
|
Carillo P, Woo SL, Comite E, El-Nakhel C, Rouphael Y, Fusco GM, Borzacchiello A, Lanzuise S, Vinale F. Application of Trichoderma harzianum, 6-pentyl-α-pyrone and Plant Biopolymer Formulations Modulate Plant Metabolism and Fruit Quality of Plum Tomatoes. PLANTS (BASEL, SWITZERLAND) 2020; 9:E771. [PMID: 32575500 PMCID: PMC7356659 DOI: 10.3390/plants9060771] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/08/2020] [Accepted: 06/17/2020] [Indexed: 12/28/2022]
Abstract
Many Trichoderma are successfully used to improve agriculture productivity due to their capacity for biocontrol and to stimulate plant growth and tolerance to abiotic stress. This research elucidates the effect of applications with Trichoderma harzianum strain T22 (T22), or biopolymer (BP) alone or in combination (BP + T22 or BP + 6-pentyl-α-pyrone (6PP); a Trichoderma secondary metabolite) on the crop performance, nutritional and functional quality of greenhouse tomato (Solanum lycopersicum L. cultivar Pixel). T22 elicited significant increases in total yield (+40.1%) compared to untreated tomato. The content of lycopene, an important antioxidant compound in tomatoes, significantly increased upon treatment with T22 (+ 49%), BP + T22 (+ 40%) and BP + 6PP (+ 52%) compared to the control. T22 treatments significantly increased the content of asparagine (+37%), GABA (+87%) and MEA (+102%) over the control; whereas BP alone strongly increased GABA (+105%) and MEA (+85%). The synthesis of these compounds implies that tomato plants are able to reuse the photorespiratory amino acids and ammonium for producing useful metabolites and reduce the pressure of photorespiration on plant metabolism, thus optimizing photosynthesis and growth. Finally, these metabolites exert many beneficial effects for human health, thus enhancing the premium quality of plum tomatoes.
Collapse
Affiliation(s)
- Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (P.C.); (G.M.F.)
| | - Sheridan L. Woo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80055 Portici, Italy
- National Research Council, Institute for Sustainable Plant Protection, 80055 Portici, Italy;
| | - Ernesto Comite
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.C.); (C.E.-N.); (Y.R.); (S.L.)
| | - Christophe El-Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.C.); (C.E.-N.); (Y.R.); (S.L.)
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.C.); (C.E.-N.); (Y.R.); (S.L.)
| | - Giovanna Marta Fusco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (P.C.); (G.M.F.)
| | - Assunta Borzacchiello
- National Research Council, Institute for Composite Polymers and Biomaterials, 80125 Napoli, Italy;
| | - Stefania Lanzuise
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.C.); (C.E.-N.); (Y.R.); (S.L.)
| | - Francesco Vinale
- National Research Council, Institute for Sustainable Plant Protection, 80055 Portici, Italy;
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
| |
Collapse
|
6
|
Corrado G, Lucini L, Miras-Moreno B, Chiaiese P, Colla G, De Pascale S, Rouphael Y. Metabolic Insights into the Anion-Anion Antagonism in Sweet Basil: Effects of Different Nitrate/Chloride Ratios in the Nutrient Solution. Int J Mol Sci 2020; 21:E2482. [PMID: 32260073 PMCID: PMC7177776 DOI: 10.3390/ijms21072482] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/25/2022] Open
Abstract
Sweet basil (Ocimum basilicum L.) is a highly versatile and globally popular culinary herb, and a rich source of aromatic and bioactive compounds. Particularly for leafy vegetables, nutrient management allows a more efficient and sustainable improvement of crop yield and quality. In this work, we investigated the effects of balanced modulation of the concentration of two antagonist anions (nitrate and chlorine) in basil. Specifically, we evaluated the changes in yield and leaf metabolic profiles in response to four different NO3-:Cl- ratios in two consecutive harvests, using a full factorial design. Our work indicated that the variation of the nitrate-chloride ratio exerts a large effect on both metabolomic profile and yield in basil, which cannot be fully explained only by an anion-anion antagonist outcome. The metabolomic reprogramming involved different biochemical classes of compounds, with distinctive traits as a function of the different nutrient ratios. Such changes involved not only a response to nutrients availability, but also to redox imbalance and oxidative stress. A network of signaling compounds, including NO and phytohormones, underlined the modeling of metabolomic signatures. Our work highlighted the potential and the magnitude of the effect of nutrient solution management in basil and provided an advancement towards understanding the metabolic response to anion antagonism in plants.
Collapse
Affiliation(s)
- Giandomenico Corrado
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (P.C.); (S.D.P.); (Y.R.)
| | - Luigi Lucini
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, University Cattolica del Sacro Cuore, 29122 Piacenza, Italy;
| | - Begoña Miras-Moreno
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, University Cattolica del Sacro Cuore, 29122 Piacenza, Italy;
- Council for Agricultural Research and Economics- Research Centre for Genomics and Bioinformatics (CREA-GB), via San Protaso 302, 29017 Fiorenzuola d’Arda, PC, Italy
| | - Pasquale Chiaiese
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (P.C.); (S.D.P.); (Y.R.)
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy;
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (P.C.); (S.D.P.); (Y.R.)
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (P.C.); (S.D.P.); (Y.R.)
| |
Collapse
|
7
|
Van Oosten MJ, Dell’Aversana E, Ruggiero A, Cirillo V, Gibon Y, Woodrow P, Maggio A, Carillo P. Omeprazole Treatment Enhances Nitrogen Use Efficiency Through Increased Nitrogen Uptake and Assimilation in Corn. FRONTIERS IN PLANT SCIENCE 2019; 10:1507. [PMID: 31867024 PMCID: PMC6904362 DOI: 10.3389/fpls.2019.01507] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/30/2019] [Indexed: 05/28/2023]
Abstract
Omeprazole is a selective proton pump inhibitor in humans that inhibits the H+/K+-ATPase of gastric parietal cells. Omeprazole has been recently shown to act as a plant growth regulator and enhancer of salt stress tolerance. Here, we report that omeprazole treatment in hydroponically grown maize improves nitrogen uptake and assimilation. The presence of micromolar concentrations of omeprazole in the nutrient solution alleviates the chlorosis and growth inhibition induced by low nitrogen availability. Nitrate uptake and assimilation is enhanced in omeprazole treated plants through changes in nitrate reductase activity, primary metabolism, and gene expression. Omeprazole enhances nitrate assimilation through an interaction with nitrate reductase, altering its activation state and affinity for nitrate as a substrate. Omeprazole and its targets represent a novel method for enhancing nitrogen use efficiency in plants.
Collapse
Affiliation(s)
| | - Emilia Dell’Aversana
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies of University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Alessandra Ruggiero
- Department of Agricultural Sciences, University of Naples Federico II, Portici (NA), Italy
| | - Valerio Cirillo
- Department of Agricultural Sciences, University of Naples Federico II, Portici (NA), Italy
| | - Yves Gibon
- UMR 1332 BFP, INRA, Bordeaux INP, Villenave d’Ornon, France
| | - Pasqualina Woodrow
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies of University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Albino Maggio
- Department of Agricultural Sciences, University of Naples Federico II, Portici (NA), Italy
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies of University of Campania “Luigi Vanvitelli”, Caserta, Italy
| |
Collapse
|
8
|
Wu H, Li Z. The Importance of Cl - Exclusion and Vacuolar Cl - Sequestration: Revisiting the Role of Cl - Transport in Plant Salt Tolerance. FRONTIERS IN PLANT SCIENCE 2019; 10:1418. [PMID: 31781141 PMCID: PMC6857526 DOI: 10.3389/fpls.2019.01418] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/11/2019] [Indexed: 05/20/2023]
Abstract
Salinity threatens agricultural production systems across the globe. While the major focus of plant researchers working in the field of salinity stress tolerance has always been on sodium and potassium, the transport patterns and physiological roles of Cl- in plant salt stress responses are studied much less. In recent years, the role of Cl- in plant salinity stress tolerance has been revisited and has received more attention. This review attempts to address the gap in knowledge of the role of Cl- transport in plant salinity stress tolerance. Cl- transport, Cl- exclusion, vacuolar Cl- sequestration, the specificity of mechanisms employed in different plant species to control shoot Cl- accumulation, and the identity of channels and transporters involved in Cl- transport in salt stressed plants are discussed. The importance of the electrochemical gradient across the tonoplast, for vacuolar Cl- sequestration, is highlighted. The toxicity of Cl- from CaCl2 is briefly reviewed separately to that of Cl- from NaCl.
Collapse
Affiliation(s)
- Honghong Wu
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Department of Botany and Plant Sciences, University of California, Riverside, CA, United States
- *Correspondence: Honghong Wu, ; Zhaohu Li,
| | - Zhaohu Li
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- *Correspondence: Honghong Wu, ; Zhaohu Li,
| |
Collapse
|