1
|
Lei X, Na B, Zhou T, Qian Y, Xie Y, Zheng Y, Cheng Q, Li P, Chen C, Sun H. Effects of Dried Tea Residues of Different Processing Techniques on the Nutritional Parameters, Fermentation Quality, and Bacterial Structure of Silaged Alfalfa. Microorganisms 2024; 12:889. [PMID: 38792719 PMCID: PMC11123680 DOI: 10.3390/microorganisms12050889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
The effects of dried tea residues on the nutritional parameters and fermentation quality, microbial community, and in vitro digestibility of alfalfa silage were investigated. In this study, dried tea residues generated from five different processing techniques (green tea, G; black tea, B; white tea, W; Pu'er raw tea, Z; Pu'er ripe tea, D) were added at two addition levels (5% and 10% fresh weight (FW)) to alfalfa and fermented for 90 days. The results showed that the tea residues increased the crude protein (CP) content (Z10: 23.85%), true protein nitrogen (TPN) content, DPPH, and ABST radical scavenging capacity, total antioxidant capacity (T-AOC), and in vitro dry matter digestibility (IVDMD) of the alfalfa silage. Moreover, the pH, ammonia-N (NH3-N) content, and acetic acid (AA) content decreased (p < 0.05). The effects of tea residues were promoted on these indicators with increasing tea residue addition. In addition, this study revealed that the influence of dried tea residues on the nutritional quality of alfalfa silage was greater than that on fermentation quality. Based on the nutrient composition, the addition of B or G to alfalfa silage can improve its silage quality, and these tea byproducts have the potential to be used as silage additives.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Hong Sun
- College of Animal Science, Guizhou University, Guiyang 550025, China; (X.L.); (B.N.); (T.Z.); (Y.Q.); (Y.X.); (Y.Z.); (Q.C.); (P.L.); (C.C.)
| |
Collapse
|
2
|
Vazquez-Mendoza OV, Andrade-Yucailla V, Elghandour MMMY, Masaquiza-Moposita DA, Cayetano-De-Jesús JA, Alvarado-Ramírez ER, Adegbeye MJ, Barros-Rodríguez M, Salem AZM. Effect of Dietary Guanidinoacetic Acid Levels on the Mitigation of Greenhouse Gas Production and the Rumen Fermentation Profile of Alfalfa-Based Diets. Animals (Basel) 2023; 13:1719. [PMID: 37889628 PMCID: PMC10252124 DOI: 10.3390/ani13111719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 10/29/2023] Open
Abstract
The objective of this study was to evaluate the effect of different percentages of alfalfa (Medicago sativa L.) hay (AH) and doses of guanidinoacetic acid (GAA) in the diet on the mitigation of greenhouse gas production, the in vitro rumen fermentation profile and methane (CH4) conversion efficiency. AH percentages were defined for the diets of beef and dairy cattle, as well as under grazing conditions (10 (AH10), 25 (AH25) and 100% (AH100)), while the GAA doses were 0 (control), 0.0005, 0.0010, 0.0015, 0.0020, 0.0025 and 0.0030 g g-1 DM diet. With an increased dose of GAA, the total gas production (GP) and methane (CH4) increased (p = 0.0439) in the AH10 diet, while in AH25 diet, no effect was observed (p = 0.1311), and in AH100, GP and CH4 levels decreased (p = 0.0113). In addition, the increase in GAA decreased (p = 0.0042) the proportion of CH4 in the AH25 diet, with no influence (p = 0.1050) on CH4 in the AH10 and AH100 diet groups. Carbon monoxide production decreased (p = 0.0227) in the AH100 diet with most GAA doses, and the other diets did not show an effect (p = 0.0617) on carbon monoxide, while the production of hydrogen sulfide decreased (p = 0.0441) in the AH10 and AH100 diets with the addition of GAA, with no effect observed in association with the AH25 diet (p = 0.3162). The pH level increased (p < 0.0001) and dry matter degradation (DMD) decreased (p < 0.0001) when AH was increased from 10 to 25%, while 25 to 100% AH contents had the opposite effect. In addition, with an increased GAA dose, only the pH in the AH100 diet increased (p = 0.0142 and p = 0.0023) the DMD in the AH10 diet group. Similarly, GAA influenced (p = 0.0002) SCFA, ME and CH4 conversion efficiency but only in the AH10 diet group. In this diet group, it was observed that with an increased dose of GAA, SCFA and ME increased (p = 0.0002), while CH4 per unit of OM decreased (p = 0.0002) only with doses of 0.0010, 0.0015 and 0.0020 g, with no effect on CH4 per unit of SCFA and ME (p = 0.1790 and p = 0.1343). In conclusion, the positive effects of GAA depend on the percentage of AH, and diets with 25 and 100% AH showed very little improvement with the addition of GAA, while the diet with 10% AH presented the best results.
Collapse
Affiliation(s)
- Oscar Vicente Vazquez-Mendoza
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca 50295, Mexico; (O.V.V.-M.); (M.M.M.Y.E.); (J.A.C.-D.-J.)
| | - Veronica Andrade-Yucailla
- Centro de Investigaciones Agropecuarias, Facultad de Ciencias Agrarias, Universidad Estatal Península de Santa Elena, La Libertad 240204, Ecuador;
| | | | | | - Jorge Adalberto Cayetano-De-Jesús
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca 50295, Mexico; (O.V.V.-M.); (M.M.M.Y.E.); (J.A.C.-D.-J.)
| | | | - Moyosore Joseph Adegbeye
- Department of Animal Production and Health, Federal University of Technology, Akure 340110, Nigeria;
| | - Marcos Barros-Rodríguez
- Facultad de Ciencias Agropecuarias, Universidad Técnica de Ambato, Cevallos 1801334, Ecuador;
| | - Abdelfattah Zeidan Mohamed Salem
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca 50295, Mexico; (O.V.V.-M.); (M.M.M.Y.E.); (J.A.C.-D.-J.)
| |
Collapse
|
3
|
Alba-Mejía JE, Dohnal V, Domínguez-Rodríguez G, Středa T, Klíma M, Mlejnková V, Skládanka J. Ergosterol and polyphenol contents as rapid indicators of orchardgrass silage safety. Heliyon 2023; 9:e14940. [PMID: 37064459 PMCID: PMC10102439 DOI: 10.1016/j.heliyon.2023.e14940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/03/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
The ergosterol (ERG) has been proposed as a potential indicator of fungal contamination, along with polyphenol content analysis to predict silage safety. Despite efforts in controlling fungal growth in silage, mycotoxin co-contamination represents a possible risk for animal and human health. Modern analytical techniques determine a multitude of fungal metabolites contaminating feed. Nonetheless, these methods require sometimes arduous sample pre-treatment, long separation times, and expensive standard compounds to identified contaminants. Thus, the goal of this study was to suggest a rapid analysis of ERG and polyphenol contents to assess silage hygienic quality in ten orchardgrass varieties ensiled without and with biological and chemical additives. The determination of ERG on samples was performed by high-performance liquid chromatography using UV detection and UV/Vis spectrophotometry to determine the polyphenol content. Statistically significant differences (P < 0.05) between varieties, years and silage additives were found. Bepro was the unique variety that did not present ERG in the first cut in 2012. ERG content increased in the first cut in 2013 using biological additives as well as ERG and polyphenol contents in the first cut in 2013 using chemical additives compared with untreated silage. In addition, biological and chemical additives used in this study did not satisfactorily reduce the content of ERG and polyphenols in silage grass. Consequently, our results provide fast information about the progressive fungal contamination of grass silage. To our knowledge, it is the first time that the presence of ERG and polyphenols is determined in ten different orchardgrass varieties treated without and with additives. In general, ERG and polyphenol contents showed to be good indicators of orchardgrass silage safety.
Collapse
|
4
|
The Effect of Combining Millet and Corn Straw as Source Forage for Beef Cattle Diets on Ruminal Degradability and Fungal Community. Animals (Basel) 2023; 13:ani13040548. [PMID: 36830335 PMCID: PMC9951761 DOI: 10.3390/ani13040548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
Three ruminal cannulated Simmental crossbreed bulls (approximately 3 years of age and with 380 ± 20 kg live weight at initiation of the experiment) were used in a 3 × 3 Latin square experiment in order to determine the effects of the treatments on ruminal pH and degradability of nutrients, as well as the rumen fungal community. The experimental periods were 21 d, with 18 d of adjustment to the respective dietary treatments and 3 d of sample collection. Treatments consisted of a basal diet containing a 47.11% composition of two sources of forage as follows: (1) 100% millet straw (MILLSTR), (2) 50:50 millet straw and corn straw (COMB), and (3) 100% corn straw (CORNSTR). Dry matter (DM), crude protein (CP), neutral detergent fiber (NDF), and acid detergent fiber (ADF) were tested for ruminal degradability using the nylon bag method, which was incubated for 6, 12, 24, 36, 48, and 72 h, and rumen fungal community in rumen fluid was determined by high-throughput gene sequencing technology. Ruminal pH was not affected by treatments. At 72 h, compared to MILLSTR, DM degradability of CORNSTR was 4.8% greater (p < 0.05), but when corn was combined with millet straw, the difference in DM degradability was 9.4%. During the first 24 h, degradability of CP was lower for CORNSTR, intermediate for MILLSTR, and higher for COMB. However, at 72 h, MILLSTR and COMB had a similar CP degradability value, staying greater than the CP degradability value of the CORNSTR treatment. Compared to MILLSTR, the rumen degradability of NDF was greater for CORNSTR and intermediate for the COMB. There was a greater degradability for ADF in CORNSTR, intermediate for COMB, and lower for MILLSTR. In all treatments, Ascomycota and Basidiomycota were dominant flora. Abundance of Basidiomycota in the group COMB was higher (p < 0.05) than that in the group CORNSTR at 12 h. Relative to the fungal genus level, the Thelebolus, Cladosporium, and Meyerozyma were the dominant fungus, and the abundance of Meyerozyma in COMB and CORNSTR were greater (p < 0.05) than MILLSTR at 12, 24, and 36 h of incubation. In conclusion, it is suggested to feed beef cattle with different proportions of millet straw and corn straw combinations.
Collapse
|
5
|
Lu X, Zhang H, Hu J, Nie G, Khan I, Feng G, Zhang X, Wang X, Huang L. Genome-wide identification and characterization of bHLH family genes from orchardgrass and the functional characterization of DgbHLH46 and DgbHLH128 in drought and salt tolerance. Funct Integr Genomics 2022; 22:1331-1344. [PMID: 35941266 DOI: 10.1007/s10142-022-00890-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/28/2022]
Abstract
Basic helix-loop-helix (bHLH) is the second largest family of transcription factors that widely exist in plants and animals, and plays a key role in a variety of biological processes. As an important forage crop worldwide, little information is available about the bHLH family in orchardgrass (Dactylis glomerata L.), although a huge number of bHLH family have been identified and characterized in plants. In this study, we performed genome-wide analysis of bHLH transcription factor family of orchardgrass and identified 132 DgbHLH genes. The phylogenetic tree was constructed by using bHLH proteins of orchardgrass, with Arabidopsis thaliana and Oryza sativa bHLH proteins, to elucidate their homology and classify them into 22 subfamilies. The results of conserved motifs and gene structure support the classification of DgbHLH family. In addition, chromosomal location and gene duplication events of DgbHLH genes were further studied. Transcriptome data exhibited that DgbHLH genes were differentially expressed in different tissues of orchardgrass. We analyzed the gene expression level of 12 DgbHLH genes in orchardgrass under three types of abiotic stresses (heat, salt, and drought). Finally, heterologous expression assays in yeast indicated that DgbHLH46 and DgbHLH128 may enhance the resistance to drought and salt stress. Furthermore, DgbHLH128 may also be involved in abiotic stress by binding to the MYC element. Our study provides a comprehensive assessment of DgbHLH family of orchardgrass, revealing new insights for enhancing gene utilization and improving forage performance.
Collapse
Affiliation(s)
- Xiaowen Lu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Huan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jialing Hu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Imran Khan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiaoshan Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
6
|
Wang B, Sun H, Wang D, Liu H, Liu J. Constraints on the utilization of cereal straw in lactating dairy cows: A review from the perspective of systems biology. ANIMAL NUTRITION 2022; 9:240-248. [PMID: 35600542 PMCID: PMC9097690 DOI: 10.1016/j.aninu.2022.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/17/2021] [Accepted: 01/24/2022] [Indexed: 10/24/2022]
|
7
|
Bica R, Palarea-Albaladejo J, Lima J, Uhrin D, Miller GA, Bowen JM, Pacheco D, Macrae A, Dewhurst RJ. Methane emissions and rumen metabolite concentrations in cattle fed two different silages. Sci Rep 2022; 12:5441. [PMID: 35361825 PMCID: PMC8971404 DOI: 10.1038/s41598-022-09108-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, 18 animals were fed two forage-based diets: red clover (RC) and grass silage (GS), in a crossover-design experiment in which methane (CH4) emissions were recorded in respiration chambers. Rumen samples obtained through naso-gastric sampling tubes were analysed by NMR. Methane yield (g/kg DM) was significantly lower from animals fed RC (17.8 ± 3.17) compared to GS (21.2 ± 4.61) p = 0.008. In total 42 metabolites were identified, 6 showing significant differences between diets (acetate, propionate, butyrate, valerate, 3-phenylopropionate, and 2-hydroxyvalerate). Partial least squares discriminant analysis (PLS-DA) was used to assess which metabolites were more important to distinguish between diets and partial least squares (PLS) regressions were used to assess which metabolites were more strongly associated with the variation in CH4 emissions. Acetate, butyrate and propionate along with dimethylamine were important for the distinction between diets according to the PLS-DA results. PLS regression revealed that diet and dry matter intake are key factors to explain CH4 variation when included in the model. Additionally, PLS was conducted within diet, revealing that the association between metabolites and CH4 emissions can be conditioned by diet. These results provide new insights into the methylotrophic methanogenic pathway, confirming that metabolite profiles change according to diet composition, with consequences for CH4 emissions.
Collapse
Affiliation(s)
- R Bica
- Scotland's Rural College, SRUC, West Mains Rd, Edinburgh, EH9 3JG, UK.
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.
- Institute National de La Recherche Agronomique (INRAE), 24 Chemin de Borde Rouge, 31320, Auzeville-Tolosane, France.
| | - J Palarea-Albaladejo
- Biomathematics and Statistics Scotland, JCMB, Peter Guthrie Tait Road, The King's Buildings, Edinburgh, EH9 3FD, UK
- Department of Computer Science, Applied Mathematics and Statistics, University of Girona, 17003, Girona, Spain
| | - J Lima
- Scotland's Rural College, SRUC, West Mains Rd, Edinburgh, EH9 3JG, UK
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - D Uhrin
- The University of Edinburgh, EaStCHEM School of Chemistry, The King's Buildings, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - G A Miller
- Scotland's Rural College, SRUC, West Mains Rd, Edinburgh, EH9 3JG, UK
| | - J M Bowen
- Scotland's Rural College, SRUC, West Mains Rd, Edinburgh, EH9 3JG, UK
| | - D Pacheco
- AgResearch Grasslands Research Centre, Tennent Drive, 11 Dairy Farm Road, Palmerston North, 4442, New Zealand
| | - A Macrae
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - R J Dewhurst
- Scotland's Rural College, SRUC, West Mains Rd, Edinburgh, EH9 3JG, UK
| |
Collapse
|
8
|
Characterization of Green Manure Sunn Hemp Crop Silage Prepared with Additives: Aerobic Instability, Nitrogen Value, and In Vitro Rumen Methane Production. FERMENTATION 2022. [DOI: 10.3390/fermentation8030104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sunn hemp (SH, Crotalaria juncea, L.) is a tropical multiple-purpose legume. The green manure SH (GMSH) crop might display protein ecology in sustaining ruminants; however, its silage features remain unclear. To efficiently prepare GMSH crop silage, additive treatments consisting of control (no additive, CON), molasses (MO), Acremonium cellulase (AC), and Lactobacillus casei TH14 strain inoculant (TH14) were implemented using a completely randomized design. Repeated measurements were done after silage (AE conditions) in a small-scale silo system for 120 days and after aerobic instability (AE + AIS conditions). Briefly, ensiling loss and aerobic stability ranged from 150 to 175 g/kg and 8.3 to 104 days, respectively. In AE conditions, the pH ranged from 4.33 to 5.74, and MO or AC was desirable (p < 0.01) for lactic acid fermentation. AC reduced the fiber contents. MO increased soluble non-protein nitrogen by decreasing insoluble nitrogen. TH14 increased the ammonia nitrogen level and in vitro methane production. In AE + AIS conditions, AC led to more air damage to the chemical compositions and reduced digestibility in vitro. The results show that an optimization of additives could effectively modify GMSH crop silage to make it a good protein roughage source; however, more studies are required for effectively feeding ruminants.
Collapse
|
9
|
Zhang L, Shang Y, Li J, Fu T, Lian H, Gao T, Shi Y, Li M. Comparison of feeding diets including dried or ensiled peanut vines as forage sources on the growth performance, ruminal fermentation, and bacterial community in young Holstein bulls. Anim Sci J 2022; 93:e13675. [PMID: 35068014 DOI: 10.1111/asj.13675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 11/01/2022]
Abstract
The objectives of this study were to compare the growth performance, ruminal fermentation, and bacterial community of young bulls fed with diets including dried or ensiled peanut vines and to investigate whether the combination of dry peanut vine and corn silage could exhibit better feeding effects. Forty-five young Holstein bulls were selected and fed for 60 days. The total mixed ration (TMR) was formulated as follows: (1) a dry peanut vine-based diet (DPV), (2) a peanut vine silage-based diet (PVS), and (3) a whole-plant corn silage mixed with the DPV (WPCS-DPV). The ratio of dietary concentrate to forage was 50:50. The results showed that the dried and ensiled peanut vines used in beef diet exhibited no difference in the average daily gain of bulls (p = 0.490). The pH of rumen fluid in bulls fed with the WPCS-DPV and PVS diets was lower than that in bulls fed with the DPV diet (p < 0.001). The bulls fed with the DPV diet had increased Ace and Chao1 values of rumen bacterial community compared with bulls fed with the PVS diet (p < 0.05). This study confirmed the feasibility of ensiling as a preservation procedure for peanut vines and provides a reference for its utilization schemes.
Collapse
Affiliation(s)
- Liyang Zhang
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology Henan Agricultural University Zhengzhou China
| | - Yuan Shang
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology Henan Agricultural University Zhengzhou China
| | - Jichao Li
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology Henan Agricultural University Zhengzhou China
| | - Tong Fu
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology Henan Agricultural University Zhengzhou China
| | - Hongxia Lian
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology Henan Agricultural University Zhengzhou China
| | - Tengyun Gao
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology Henan Agricultural University Zhengzhou China
| | - Yinghua Shi
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology Henan Agricultural University Zhengzhou China
| | - Ming Li
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology Henan Agricultural University Zhengzhou China
| |
Collapse
|