1
|
Yu Z, Ai N, Xu X, Zhang P, Jin Z, Li X, Ma H. Exploring the Molecular Mechanism of Skeletal Muscle Development in Ningxiang Pig by Weighted Gene Co-Expression Network Analysis. Int J Mol Sci 2024; 25:9089. [PMID: 39201775 PMCID: PMC11354759 DOI: 10.3390/ijms25169089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
With the continuous improvement in living standards, people's demand for high-quality meat is increasing. Ningxiang pig has delicious meat of high nutritional value, and is loved by consumers. However, its slow growth and low meat yield seriously restrict its efficient utilization. Gene expression is the internal driving force of life activities, so in order to fundamentally improve its growth rate, it is key to explore the molecular mechanism of skeletal muscle development in Ningxiang pigs. In this paper, Ningxiang boars were selected in four growth stages (30 days: weaning period, 90 days: nursing period, 150 days: early fattening period, and 210 days: late fattening period), and the longissimus dorsi (LD) muscle was taken from three boars in each stage. The fatty acid content, amino acid content, muscle fiber diameter density and type of LD were detected by gas chromatography, acidolysis, hematoxylin eosin (HE) staining and immunofluorescence (IF) staining. After transcription sequencing, weighted gene co-expression network analysis (WGCNA) combined with the phenotype of the LD was used to explore the key genes and signaling pathways affecting muscle development. The results showed that 10 modules were identified by WGCNA, including 5 modules related to muscle development stage, module characteristics of muscle fiber density, 5 modules characteristic of muscle fiber diameter, and a module characteristic of palmitoleic acid (C16:1) and linoleic acid (C18:2n6C). Gene ontology (GO) enrichment analysis found that 52 transcripts relating to muscle development were enriched in these modules, including 44 known genes and 8 novel genes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that these genes were enriched in the auxin, estrogen and cyclic guanosine monophosphate-protein kinase G (cGMP-PKG) pathways. Twelve of these genes were transcription factors, there were interactions among 20 genes, and the interactions among 11 proteins in human, pig and mouse were stable. To sum up, through the integrated analysis of phenotype and transcriptome, this paper analyzed the key genes and possible regulatory networks of skeletal muscle development in Ningxiang pigs at various stages, to provide a reference for the in-depth study of skeletal muscle development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Haiming Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Z.Y.); (N.A.); (X.X.); (P.Z.); (Z.J.); (X.L.)
| |
Collapse
|
2
|
Wang F, Cheng Y, Yin L, Liu S, Li X, Xie M, Li J, Chen J, Fu C. Dietary supplementation with ellagic acid improves the growth performance, meat quality, and metabolomics profile of yellow-feathered broiler chickens. Poult Sci 2024; 103:103700. [PMID: 38631231 PMCID: PMC11036095 DOI: 10.1016/j.psj.2024.103700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
The aim of this research was to explore the effects of ellagic acid (EA) on growth performance, meat quality, and metabolomics profile of broiler chickens. 240 healthy yellow-feathered broilers were randomly divided into 4 groups (6 replicates/group and 10 broilers /replicate): 1) a standard diet (CON); 2) CON+0.01% EA; 3) CON+0.02% EA; 4) CON+0.04% EA. Compared with the CON group, dietary 0.02% EA increased linearly and quadratically the ADG and lowered F/G ratio from 29 to 56 d and from 1 to 56 d of age (P < 0.05). The EA groups had higher spleen index and showed linear and quadratic improve thymus index (P < 0.05). A total of 0.02% EA linearly and quadratically increased the leg muscle percentage and quadratically increased the breast muscle percentage (P < 0.05). Compared to the control diet, 0.02% EA decreased quadratically the L* and increased a* of breast muscle at 45 min postslaughter (P < 0.05), and quadratically decreased (P < 0.05) the b* and increased linearly and quadratically (P < 0.05) drip loss. Additionally, EA improved linearly and quadratically (P < 0.05) serum total protein concentration and reduced linearly and quadratically (P < 0.05) serum blood urea nitrogen concentration. A total of 0.02% EA quadratically increased catalase activity and decreased malondialdehyde concentration in breast muscle compared with the control diet (P < 0.05). 0.02% and 0.04% EA could linearly and quadratically increase (P < 0.05) the concentrations of histidine, leucine and essential amino acids (EAA), 0.02% EA could linearly and quadratically increase (P < 0.05) the concentrations of threonine, glutamate, and flavored amino acids in breast muscle. 0.02% EA linearly and quadratically improved the C20:3n6, C22:6n3, polyunsaturated fatty acid (PUFA) concentrations, and the ratio of PUFA to saturated fatty acids (SFA), but reduced the C16:0 and the SFA concentrations in breast muscle than the CON group (P < 0.05). The EA diet linearly increased (P = 0.035) and quadratically tended (P = 0.068) to regulate the C18:2n6c concentration of breast muscle. Metabolomics showed that alanine metabolism, aspartate and glutamate metabolism, arginine and proline metabolism, taurine and hypotaurine metabolism, and glycerophospholipid metabolism were the most differentially abundant. These results showed that EA supported moderate positive effects on growth performance, meat quality, and metabolomics profile of broilers.
Collapse
Affiliation(s)
- Fang Wang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Ying Cheng
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Lichen Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Shida Liu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xinrui Li
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Meizhu Xie
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jiayang Li
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jiashun Chen
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Chenxing Fu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
3
|
Xu X, Yu Z, Ai N, Liufu S, Liu X, Chen B, Li X, Jiang J, Zhang Y, Ma H, Yin Y. Molecular Mechanism of MYL4 Regulation of Skeletal Muscle Development in Pigs. Genes (Basel) 2023; 14:1267. [PMID: 37372447 DOI: 10.3390/genes14061267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The processes of muscle growth and development, including myoblast proliferation, migration, differentiation, and fusion, are modified by a variety of regulatory factors. MYL4 plays an important role in atrial development, atrial cardiomyopathy, muscle-fiber size, and muscle development. The structural variation (SV) of MYL4 was found via the de novo sequencing of Ningxiang pigs, and the existence of SV was verified in the experiments. The genotype distribution of Ningxiang pigs and Large White pigs was detected, and it was found that Ningxiang pigs were mainly of the BB genotype and that Large White pigs were mainly of the AB genotype. However, the molecular mechanisms behind the MYL4-mediated regulation of skeletal muscle development need to be deeply explored. Therefore, RT-qPCR, 3'RACE, CCK8, EdU, Western blot, immunofluorescence, flow cytometry, and bioinformation analysis were used to explore the function of MYL4 in myoblast development. The cDNA of MYL4 was successfully cloned from Ningxiang pigs, and its physicochemical properties were predicted. The expression profiles in six tissues and four stages of Ningxiang pigs and Large White pigs were found to be the highest in the lungs and 30 days after birth. The expression of MYL4 increased gradually with the extension of the myogenic differentiation time. The myoblast function test showed that the overexpression of MYL4 inhibited proliferation and promoted apoptosis and differentiation. The knockdown of MYL4 showed the opposite result. These results enhance our understanding of the molecular mechanisms of muscle development and provide a solid theoretical foundation for further exploring the role of the MYL4 gene in muscle development.
Collapse
Affiliation(s)
- Xueli Xu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zonggang Yu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Nini Ai
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Sui Liufu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xiaolin Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Bohe Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xintong Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jun Jiang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yuebo Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Haiming Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
4
|
Wang F, Yin Y, Wang Q, Xie J, Fu C, Guo H, Chen J, Yin Y. Effects of dietary β-alanine supplementation on growth performance, meat quality, carnosine content, amino acid composition and muscular antioxidant capacity in Chinese indigenous Ningxiang pig. J Anim Physiol Anim Nutr (Berl) 2022; 107:878-886. [PMID: 36575591 DOI: 10.1111/jpn.13797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/21/2022] [Accepted: 12/06/2022] [Indexed: 12/29/2022]
Abstract
β-alanine has been demonstrated to improve carcass traits and meat quality of animals. However, no research has been found on the effects of dietary β-alanine in the meat quality control of finishing pigs, which are among the research focus. Therefore, this study aimed to evaluate the effects of dietary β-alanine supplementation on growth performance, meat quality, carnosine content, amino acid composition and muscular antioxidant capacity of Chinese indigenous Ningxiang pigs. The treatments contained a basal diet (control, CON) and a basal diet supplemented with 600 mg/kg β-alanine. Each treatment group consisted of five pens, with five pigs per pen. Results showed that compared with CON, supplemental β-alanine did not affect the final body weight, average daily gain, average daily feed intake and the feed-to-gain ratio of pigs. Dietary β-alanine supplementation tended to increase the pH45 min (p = 0.071) while decreasing the shear force (p = 0.085) and the drip loss (p = 0.091). Moreover, it improved (p < 0.05) the activities of glutathione peroxidase and catalase and lessened (p < 0.05) malondialdehyde concentration. Added β-alanine in diets of finishing pigs could enhance the concentrations of arginine, alanine, and glutamate (p < 0.05) in the longissimus dorsi muscle and tended to raise the levels of cysteine, glycine and anserine (p = 0.060, p = 0.098 and p = 0.091 respectively). Taken together, our results showed that dietary β-alanine supplementation contributed to the improvement of the carcass traits, meat quality and anserine content, the amelioration of muscle antioxidant capacity and the regulation of amino acid composition in Chinese indigenous Ningxiang pigs.
Collapse
Affiliation(s)
- Fang Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Yexin Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Qiye Wang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Junyan Xie
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Chenxing Fu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Henghua Guo
- Anhui Huaheng Biotechnology, Hefei, Anhui, China
| | - Jiashun Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Yulong Yin
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China.,Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| |
Collapse
|
5
|
Leite A, Domínguez R, Vasconcelos L, Ferreira I, Pereira E, Pinheiro V, Outor-Monteiro D, Rodrigues S, Lorenzo JM, Santos EM, Andrés SC, Campagnol PCB, Teixeira A. Can the Introduction of Different Olive Cakes Affect the Carcass, Meat and Fat Quality of Bísaro Pork? Foods 2022; 11:foods11111650. [PMID: 35681400 PMCID: PMC9180486 DOI: 10.3390/foods11111650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
The present study aimed to evaluate the effect of the inclusion of different olive cakes in the diet of Bísaro pigs on the carcass, meat and fat. The carcasses of 40 animals fed a diet with five treatments (T1—Basic diet and commercial feed; T2—Basic diet + 10% crude olive cake; T3—Basic diet + 10% olive cake, two phases; T4—Basic diet + 10% exhausted olive cake; T5—Basic diet + 10% exhausted olive cake + 1% olive oil) were used to study the effect on carcass traits, physicochemical meat quality and lipid composition of meat and backfat. There were no significant differences between treatments for the conformation measurements performed, except for the length at the seventh and last rib (p < 0.05). The percentage of prime cuts of the carcass in Bísaro pig is within the values indicated by the Portuguese Standard 2931. No significant differences between treatments for body weight, pH and carcass weight were found. The values of ultimate pH (5.7), L* (51−52), b* (11−12) and SF (3.4−4.2) observed confirm a non-exudative and firm meat without quality deviations, such as DFD or PSE. Thus, as a general conclusion, the inclusion of different olive cakes in the diet of Bísaro pigs did not cause any negative consequences on the carcass characteristics and conformation as well as in the meat and lipidic quality. In addition, the inclusion of this olive industry by-product in the animal diet would be an important contribution to solving the problem of the great environmental impact from olive-mill wastewaters from the extractive industries.
Collapse
Affiliation(s)
- Ana Leite
- Mountain Reserach Center (CIMO), Polytechnic Instituto f Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (A.L.); (L.V.); (I.F.); (E.P.); (S.R.)
- Food Technology, Faculty of Sciences Ourense, University of Vigo, 32004 Ourense, Spain;
| | - Rubén Domínguez
- Research, Meat Technology Centre of Galicia (CTC), Rua Galicia No. 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain;
| | - Lia Vasconcelos
- Mountain Reserach Center (CIMO), Polytechnic Instituto f Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (A.L.); (L.V.); (I.F.); (E.P.); (S.R.)
| | - Iasmin Ferreira
- Mountain Reserach Center (CIMO), Polytechnic Instituto f Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (A.L.); (L.V.); (I.F.); (E.P.); (S.R.)
| | - Etelvina Pereira
- Mountain Reserach Center (CIMO), Polytechnic Instituto f Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (A.L.); (L.V.); (I.F.); (E.P.); (S.R.)
| | - Victor Pinheiro
- Veterinary and Animal Reserach Centre (CECAV), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (V.P.); (D.O.-M.)
| | - Divanildo Outor-Monteiro
- Veterinary and Animal Reserach Centre (CECAV), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (V.P.); (D.O.-M.)
| | - Sandra Rodrigues
- Mountain Reserach Center (CIMO), Polytechnic Instituto f Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (A.L.); (L.V.); (I.F.); (E.P.); (S.R.)
| | - José Manuel Lorenzo
- Food Technology, Faculty of Sciences Ourense, University of Vigo, 32004 Ourense, Spain;
- Research, Meat Technology Centre of Galicia (CTC), Rua Galicia No. 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain;
| | - Eva María Santos
- Chemistry Academic Area, Autonomus University of the State of Hidalgo, Carr. Pachuca-Tulancingo Km 4.5 s/n, Col. Carboneras, Mineral de la Reforma, Pachuca 42183, Mexico;
| | - Silvina Cecilia Andrés
- Center for Research and Development in Food Cryotechnology (CIDCA, CONICET-CICPBA-UNLP), National University of La Plata UNLP, 47 y 116, La Plata 1900, Argentina;
| | - Paulo C. B. Campagnol
- Department of Food Science and Technology, University of Santa Maria—USM, Santa Maria 97105-900, Brazil;
| | - Alfredo Teixeira
- Mountain Reserach Center (CIMO), Polytechnic Instituto f Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (A.L.); (L.V.); (I.F.); (E.P.); (S.R.)
- Correspondence:
| |
Collapse
|
6
|
Lei L, Wang Z, Li J, Yang H, Yin Y, Tan B, Chen J. Comparative Microbial Profiles of Colonic Digesta between Ningxiang Pig and Large White Pig. Animals (Basel) 2021; 11:ani11071862. [PMID: 34201441 PMCID: PMC8300102 DOI: 10.3390/ani11071862] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 01/07/2023] Open
Abstract
Sixteen 35-day-old piglets, including eight Large White (LW) piglets (a lean-type pig breed) and eight Ningxiang (NX) piglets (a fatty-type Chinese Indigenous pig breed), were fed the same diet for 105 days. NX pigs had higher intramuscular fat content than LW pigs (p < 0.05). According to 16S rRNA gene sequencing, the relative abundances of the genera Ruminococcaceae_NK4A214_group, Parabacteroides, Christensenellaaceae_R-7_group and Ruminiclostridium were higher, whereas the abundances of Prevotellaceae_NK3B31_group, Prevotella, Subdoligranulum and Faecalibacterium were lower, in the colon of NX pigs compared to that of LW pigs. Nonmetric multidimensional scaling analysis revealed that the microbiota of the two pig breeds clustered separately along the principal coordinate axis. Furthermore, functional prediction of the bacterial communities suggested higher fatty acid biosynthesis in NX pigs. NX pigs also exhibited lower concentrations of total short-chain fatty acids, propionate and butyrate in the colon (p < 0.05). These findings suggest that NX pigs exhibited higher intramuscular fat content and backfat thickness than LW pigs. The bacterial communities in the colon of NX pigs were also more diverse than those in the colon of LW pigs, which might be used as a potential metabolomics mechanism to research different breeds of pigs.
Collapse
Affiliation(s)
- Linfeng Lei
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410125, China; (L.L.); (Y.Y.); (B.T.)
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (Z.W.); (H.Y.)
| | - Zhaobin Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (Z.W.); (H.Y.)
| | - Jianzhong Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (Z.W.); (H.Y.)
- Correspondence: (J.L.); (J.C.); Tel.: +86-731-84619706 (J.C.); Fax: +86-731-84612685 (J.C.)
| | - Huansheng Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (Z.W.); (H.Y.)
| | - Yulong Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410125, China; (L.L.); (Y.Y.); (B.T.)
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (Z.W.); (H.Y.)
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Bie Tan
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410125, China; (L.L.); (Y.Y.); (B.T.)
| | - Jiashun Chen
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410125, China; (L.L.); (Y.Y.); (B.T.)
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Correspondence: (J.L.); (J.C.); Tel.: +86-731-84619706 (J.C.); Fax: +86-731-84612685 (J.C.)
| |
Collapse
|
7
|
Faustin Evaris E, Sarmiento-Franco L, Sandoval-Castro CA. Meat and bone quality of slow-growing male chickens raised with outdoor access in tropical climate. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Gong Y, Zhang Y, Li B, Xiao Y, Zeng Q, Xu K, Duan Y, He J, Ma H. Insight into Liver lncRNA and mRNA Profiling at Four Developmental Stages in Ningxiang Pig. BIOLOGY 2021; 10:310. [PMID: 33917834 PMCID: PMC8068270 DOI: 10.3390/biology10040310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 12/23/2022]
Abstract
Ningxiang pigs, a fat-type pig, are native to Ningxiang County in Hunan Province, with thousands of years of breeding history. This study aims to explore the expression profiles and functional networks on messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs) in the liver. Liver tissue of Ningxiang piglets was collected at 30, 90, 150, and 210 days after birth (four development stages), and the mRNA and lncRNA expression was profiled. Compared to mRNA and lncRNA expression profiles, most differentially expressed mRNAs (DEmRNAs) were upregulated at 30 days; however, most DElncRNAs were downregulated at 210 days. Via Short Time-series Expression Miner (STEM) analysis and weighted gene co-expression network analysis (WGCNA), a complex interaction between mRNAs and lncRNAs was identified, indicating that lncRNAs may be a critical regulatory element for mRNAs. One module of genes in particular (module profile 4) was related to fibril organization, vasculogenesis, GTPase activator activity, and regulation of kinase activity. The mRNAs and lncRNAs in module profile 4 had a similar pattern of expression, indicating that they have functional and regulatory relationships. Only CAV1, PACSIN2, and CDC42 in the particular mRNA profile 4 were the target genes of lncRNAs in that profile, which shows the possible regulatory relationship between lncRNAs and mRNAs. The expression of these genes and lncRNAs in profile 4 was the highest at 30 days, and it is believed that these RNAs may play a critical role during the suckling period in order to meet the dietary requirements of piglets. In the lncRNA-mRNA co-expression network, the identified gene hubs and associated lncRNAs were shown to be involved in saccharide, lipid, and glucose metabolism, which may play an important role in the development and health of the liver. This result will lead to further investigation of liver lncRNA functions at various stages of development in Ningxiang pigs.
Collapse
Affiliation(s)
- Yan Gong
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.G.); (Y.Z.); (B.L.); (Y.X.); (Q.Z.); (J.H.)
| | - Yuebo Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.G.); (Y.Z.); (B.L.); (Y.X.); (Q.Z.); (J.H.)
| | - Biao Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.G.); (Y.Z.); (B.L.); (Y.X.); (Q.Z.); (J.H.)
| | - Yu Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.G.); (Y.Z.); (B.L.); (Y.X.); (Q.Z.); (J.H.)
| | - Qinghua Zeng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.G.); (Y.Z.); (B.L.); (Y.X.); (Q.Z.); (J.H.)
- Ningxiang Pig Farm of Dalong Livestock Technology Co. Ltd., Ningxiang 410600, China
| | - Kang Xu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha 410125, China; (K.X.); (Y.D.)
| | - Yehui Duan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha 410125, China; (K.X.); (Y.D.)
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.G.); (Y.Z.); (B.L.); (Y.X.); (Q.Z.); (J.H.)
| | - Haiming Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.G.); (Y.Z.); (B.L.); (Y.X.); (Q.Z.); (J.H.)
| |
Collapse
|
9
|
Chen J, Chen F, Lin X, Wang Y, He J, Zhao Y. Effect of Excessive or Restrictive Energy on Growth Performance, Meat Quality, and Intramuscular Fat Deposition in Finishing Ningxiang Pigs. Animals (Basel) 2020; 11:E27. [PMID: 33375747 PMCID: PMC7823336 DOI: 10.3390/ani11010027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/04/2023] Open
Abstract
This study investigated the effects of excessive or restrictive energy on growth performance, meat quality, intramuscular fat (IMF) deposition, and related gene expression in finishing Ningxiang pigs. A total of 36 Ningxiang pigs (43.26 ± 3.21 kg) were randomly assigned to three treatments (6 pens of 2 piglets per treatment) and fed by one of three dietary treatments until the pigs of each treatment weighed approximately 75 kg equally. The three treatments were control diet (digestible energy, DE:13.02 MJ/kg, CON), excessive energy diet (DE 15.22 MJ/kg, EE), and restrictive energy diet (DE 10.84 MJ/kg, RE). Results showed that EE improved average daily gain (ADG) and feed conversion ratio (FCR) (p < 0.01), while nothing significantly changed by RE except FCR increasing (p < 0.01). EE increased the content of IMF and triglycerides (TG) (p < 0.05), L*24h and b*45min (p < 0.01), while decreasing cooking loss and meat tenderness in longissimus thoracis (LT) (p < 0.05). b*24h was significantly increased with the increase of energy level (p < 0.01). Meanwhile, EE increased the cross-sectional area (CSA) of muscle fiber and the mRNA expression of myosin heavy chain (MyHC) IIb, acetyl CoA carboxylase (ACC), fatty acid synthase (FAS), and adipocyte fatty-acid binding protein (FABP4) (p < 0.05). In addition, throughout: A diet supplemented with excessive energy promoted IMF deposition by positively changing lipogenic potential while decreasing tenderness by increasing glycolytic muscle fibers, which together affected meat quality. In terms of growth performance and meat quality, the present study suggests that the low-energy diet is suitable for finishing Ningxiang pigs.
Collapse
Affiliation(s)
| | | | | | | | - Jianhua He
- College of Animal Science & Technology, Hunan Agricultural University, Changsha 410128, China; (J.C.); (F.C.); (X.L.); (Y.W.)
| | - Yurong Zhao
- College of Animal Science & Technology, Hunan Agricultural University, Changsha 410128, China; (J.C.); (F.C.); (X.L.); (Y.W.)
| |
Collapse
|