1
|
Sui Y, Feng X, Ma Y, Zou Y, Liu Y, Huang J, Zhu X, Wang J. BHBA attenuates endoplasmic reticulum stress-dependent neuroinflammation via the gut-brain axis in a mouse model of heat stress. CNS Neurosci Ther 2024; 30:e14840. [PMID: 38973202 PMCID: PMC11228358 DOI: 10.1111/cns.14840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Heat stress (HS) commonly occurs as a severe pathological response when the body's sensible temperature exceeds its thermoregulatory capacity, leading to the development of chronic brain inflammation, known as neuroinflammation. Emerging evidence suggests that HS leads to the disruption of the gut microbiota, whereas abnormalities in the gut microbiota have been demonstrated to affect neuroinflammation. However, the mechanisms underlying the effects of HS on neuroinflammation are poorly studied. Meanwhile, effective interventions have been unclear. β-Hydroxybutyric acid (BHBA) has been found to have neuroprotective and anti-inflammatory properties in previous studies. This study aims to explore the modulatory effects of BHBA on neuroinflammation induced by HS and elucidate the underlying molecular mechanisms. METHODS An in vivo and in vitro model of HS was constructed under the precondition of BHBA pretreatment. The modulatory effects of BHBA on HS-induced neuroinflammation were explored and the underlying molecular mechanisms were elucidated by flow cytometry, WB, qPCR, immunofluorescence staining, DCFH-DA fluorescent probe assay, and 16S rRNA gene sequencing of colonic contents. RESULTS Heat stress was found to cause gut microbiota disruption in HS mouse models, and TM7 and [Previotella] spp. may be the best potential biomarkers for assessing the occurrence of HS. Fecal microbiota transplantation associated with BHBA effectively reversed the disruption of gut microbiota in HS mice. Moreover, BHBA may inhibit microglia hyperactivation, suppress neuroinflammation (TNF-α, IL-1β, and IL-6), and reduce the expression of cortical endoplasmic reticulum stress (ERS) markers (GRP78 and CHOP) mainly through its modulatory effects on the gut microbiota (TM7, Lactobacillus spp., Ruminalococcus spp., and Prevotella spp.). In vitro experiments revealed that BHBA (1 mM) raised the expression of the ERS marker GRP78, enhanced cellular activity, and increased the generation of reactive oxygen species (ROS) and anti-inflammatory cytokines (IL-10), while also inhibiting HS-induced apoptosis, ROS production, and excessive release of inflammatory cytokines (TNF-α and IL-1β) in mouse BV2 cells. CONCLUSION β-Hydroxybutyric acid may be an effective agent for preventing neuroinflammation in HS mice, possibly due to its ability to inhibit ERS and subsequent microglia neuroinflammation via the gut-brain axis. These findings lay the groundwork for future research and development of BHBA as a preventive drug for HS and provide fresh insights into techniques for treating neurological illnesses by modifying the gut microbiota.
Collapse
Affiliation(s)
- Yuzhen Sui
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiao Feng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yue Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yimeng Zou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanli Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jian Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoyan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Qi J, Yang Q, Xia Q, Huang F, Guo H, Cui H, Xie Y, Ren Z, Gou L, Cai D, Kumbhar MA, Fang J, Zuo Z. Low Glucose plus β-Hydroxybutyrate Induces an Enhanced Inflammatory Response in Yak Alveolar Macrophages via Activating the GPR109A/NF-κB Signaling Pathway. Int J Mol Sci 2023; 24:11331. [PMID: 37511091 PMCID: PMC10379377 DOI: 10.3390/ijms241411331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Yaks are often subject to long-term starvation and a high prevalence of respiratory diseases and mortality in the withered season, yet the mechanisms that cause this remain unclear. Research has demonstrated that β-hydroxybutyrate (BHB) plays a significant role in regulating the immune system. Hence, we hypothesize that the low glucose and high BHB condition induced by severe starvation might have an effect on the pro-inflammatory response of the alveolar macrophages (AMs) in yaks. To validate our hypothesis, we isolated and identified primary AMs from freshly slaughtered yaks and cultured them in a medium with 5.5 mM of glucose or 2.8 mM of glucose plus 1-4 mM of BHB. Utilizing a real-time quantitative polymerase chain reaction (RT-qPCR), immunoblot assay, and enzyme-linked immunosorbent assay (ELISA), we evaluated the gene and protein expression levels of GPR109A (G-protein-coupled receptor 109A), NF-κB p65, p38, and PPARγ and the concentrations of pro-inflammatory cytokines interleukin (IL)-1β and IL-6 and tumor necrosis factor (TNF)-α in the supernatant. The results demonstrated that AMs exposed to low glucose plus BHB had significantly higher levels of IL-1β, IL-6, and TNF-α (p < 0.05) and higher activity of the GPR109A/NF-κB signaling pathway. A pretreatment of either pertussis toxin (PTX, inhibitor of GPR109A) or pyrrolidinedithiocarbamic (PDTC, inhibitor of NF-κB p65) was effective in preventing the elevated secretion of pro-inflammatory cytokines induced by low glucose plus BHB (p < 0.05). These results indicated that the low glucose plus BHB condition would induce an enhanced pro-inflammatory response through the activation of the GPR109A/NF-κB signaling pathway in primary yak AMs, which is probably the reason why yaks experience a higher rate of respiratory diseases and mortality. This study will offer new insight into the prevention and treatment of bovine respiratory diseases.
Collapse
Affiliation(s)
- Jiancheng Qi
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiyuan Yang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qing Xia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Fangyuan Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongrui Guo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Hengmin Cui
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yue Xie
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Liping Gou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Dongjie Cai
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Maqsood Ahmed Kumbhar
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Fang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhicai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
3
|
Shah AM, Wang Z, Ma J, Hu R, Li X, Li G, Yao X, Guo Y, Peng Q, Xue B, Wang L. Effects of uni and bilateral castration on growth performance and lipid metabolism in yellow cattle. Anim Biotechnol 2023; 34:77-84. [PMID: 34138682 DOI: 10.1080/10495398.2021.1936540] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This study was conducted to examine the influence of uni and bilateral castration on growth performance and lipid metabolism in yellow cattle. Eighteen 9-month-old healthy yellow cattle (average body weight 184.03 ± 4.09 kg) were selected and divided into three groups: The uncastrated cattle (C), half castrated cattle (HC) and full castrated cattle (FC). The results showed that the growth rate of FC group was significantly reduced as compared to HC and C group, while the feed to gain ratio exhibited an opposite trend. The concentrations of triglycerides (TG), low-density lipoprotein cholesterol (LDL) and high-density lipoprotein (HDL) were increased significantly in FC group from day 60 to the end of the trial compared to HC and control groups. Serum testosterone concentration of FC group cattle was decreased from day 60 to 120 d of the trial compared to HC and control groups. The concentration of the lauric acid in FC cattle was significantly increased from the HC and control groups. In the FC group, the acetyl-CoA carboxylase alpha (ACACA), ACC and fatty acid synthase (FAS) gene expression levels were significantly higher compared to control and HC groups. Our results of this study suggest that bilateral castration increased the lipid metabolism and fatty acid composition compared to unilateral castrated and un-castrated cattle.HighlightsBilateral castration alters the growth performance in yellow cattle.Bilateral castration alters hormones levels and lipid metabolites levels in serum.Bilateral castration improves the lipid metabolism and fatty acid profile.
Collapse
Affiliation(s)
- Ali Mujtaba Shah
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, PR China.,Department of Livestock Production, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences Sakrand, Sakrand, Pakistan
| | - Zhisheng Wang
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, PR China
| | - Jian Ma
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, PR China
| | - Rui Hu
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, PR China
| | - Xiang Li
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, PR China
| | - Guangyang Li
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, PR China
| | - Xiaohe Yao
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, PR China
| | - Yixin Guo
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, PR China
| | - Quanhui Peng
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, PR China
| | - Bai Xue
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, PR China
| | - Lizhi Wang
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, PR China
| |
Collapse
|
4
|
Zhu Y, Li X, zhaxi L, zhaxi S, Suolang, Ciyang, Sun G, yangji C, wangdui B. House feeding system improves the estrus rate in yaks (Bos grunniens) by increasing specific fecal microbiota and myo-inositol content in serum. Front Microbiol 2022; 13:974765. [PMID: 36160251 PMCID: PMC9491274 DOI: 10.3389/fmicb.2022.974765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Grazing (G) yaks (Bos grunniens) are generally of low fertility, which severely limits the income of local pastoralists. However, we recently found that yaks had a 52% higher estrus rate in house feeding (HF) than in G. Gas chromatography-mass spectrometry (GC-MS) and 16S rRNA gene sequencing were used to analyze serum metabolites and fecal microbiota of 20 rutting yaks in the G and HF systems, respectively, to explain this phenomenon. The results showed that 73 total metabolites differed significantly (p < 0.05 and VIP > 1) between the G and HF systems. In the HF system, 53 were upregulated and 20 were downregulated compared with the G system. Organic oxygen compounds, organic acids and their derivatives, and lipids and lipid-like molecules were the most common differential metabolites. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway mapper revealed that 25 metabolic signaling pathways differed significantly between the two systems. The top three enriched pathways included central carbon metabolism in cancer, aminoacyl–tRNA biosynthesis, and ABC transporters. The 16S rRNA gene sequencing data showed no significant differences in Chao 1 index between the two systems. According to principal component analysis (PCA), the HF and G systems were distinctly and separately clustered in terms of fecal microbiota distribution. The G system showed significantly higher abundances of Firmicutes. The HF system showed significantly higher abundances of Alistipes, Treponema, and Rikenellaceae_ RC9_ gut_ group. Pearson's correlation analysis and core network analysis revealed that Rikenellaceae_RC9_ gut_ group, Alistipes, and Treponema were positively correlated with myo-inositol and formed the core bacteria. In summary, the HF system promoted the estrus rate and changed the composition of yak fecal microbiota and serum metabolites. Increased estrus rate might be obtained due to enhanced myo-inositol content in yak serum via the HF system. Correlation analysis suggested that myo-inositol content might also be partly increased via yak-specific fecal microbiota, contributing to the estrus rate. These findings could lead to a novel therapeutic strategy for G yaks due to their low estrus rate.
Collapse
|
5
|
Paul V, Krishnan G, Deori S, Bam J, Chakravarty P, Sarkar M. Body status and blood metabolites profiles during resumption of postpartum ovarian activity in yak (Poephagus grunniens). Reprod Domest Anim 2021; 56:1377-1386. [PMID: 34378257 DOI: 10.1111/rda.14002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/09/2021] [Indexed: 11/28/2022]
Abstract
We examined the changes in body weight (BW), back-fat thickness (BFT) and blood metabolites in relation to postpartum (PP) ovarian activity status in twenty female yaks raised under semi-intensive system. BFT and ovarian activities, like follicle development, ovulation (OV) and corpus luteum (CL) development, were monitored from 4 to 15 weeks (wk) PP using ultrasonography. Resumption of ovarian activity was confirmed with ovulation of dominant follicle (DF) and subsequent CL development, and >1 ng/ml progesterone concentration in blood plasma sample after 1week of ovulation. Yaks were further classified as cyclic (with CL), acyclic (without CL), and cystic (with >25 mm follicular cyst; FC). Within 20 weeks PP, 60% yaks resumed cyclic ovarian activity, while 25% failed to initiate cycling activity, and 15% developed follicular cysts. In all categories of yak, BW gradually decreased (p < .05) till nadir; however, nadir reached earlier (p < .05) in acyclic yaks. BFT differed (p < .05) among the yak groups, but it tended to be higher in cyclic yaks as compared to acyclic and cystic. No difference (p > .05) in non-esterified fatty acids (NEFA) values was found among the different categories of yaks, whereas, beta-hydroxy butyrate (BHB) levels were higher in cystic animals as compared to acyclic and cyclic. Blood glucose levels decreased in all yaks during initial 2 weeks after calving. Our findings suggest that yaks with low BW, BFT and glucose levels, and higher BHB values were at risk of delayed resumption of ovarian activity and concomitant development of follicular cysts.
Collapse
Affiliation(s)
- Vijay Paul
- ICAR-National Research Centre on Yak, Arunachal Pradesh, India
| | - G Krishnan
- ICAR-National Research Centre on Yak, Arunachal Pradesh, India.,ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - S Deori
- ICAR-National Research Centre on Yak, Arunachal Pradesh, India.,ICAR-Research Complex for NEH region, Meghalaya, India
| | - Joken Bam
- ICAR-National Research Centre on Yak, Arunachal Pradesh, India
| | - P Chakravarty
- ICAR-National Research Centre on Yak, Arunachal Pradesh, India
| | - M Sarkar
- ICAR-National Research Centre on Yak, Arunachal Pradesh, India
| |
Collapse
|
6
|
Mierziak J, Burgberger M, Wojtasik W. 3-Hydroxybutyrate as a Metabolite and a Signal Molecule Regulating Processes of Living Organisms. Biomolecules 2021; 11:biom11030402. [PMID: 33803253 PMCID: PMC8000602 DOI: 10.3390/biom11030402] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
3-hydroxybutyrate (3-HB) as a very important metabolite occurs in animals, bacteria and plants. It is well known that in animals, 3-HB is formed as a product of the normal metabolism of fatty acid oxidation and can therefore be used as an energy source in the absence of sufficient blood glucose. In microorganisms, 3-HB mainly serves as a substrate for the synthesis of polyhydroxybutyrate, which is a reserve material. Recent studies show that in plants, 3-HB acts as a regulatory molecule that most likely influences the expression of genes involved in DNA methylation, thereby altering DNA methylation levels. Additionally, in animals, 3-HB is not only an intermediate metabolite, but also an important regulatory molecule that can influence gene expression, lipid metabolism, neuronal function, and overall metabolic rate. Some of these effects are the direct effects of 3-HB itself, while others are indirect effects, regulated by the metabolites into which 3-HB is converted. One of the most important regulatory functions of 3-HB is the inhibition of the activity of histone deacetylases and thus the epigenetic regulation of many genes. Due to the number of functions of this compound, it also shows promising therapeutic properties.
Collapse
|
7
|
Qi J, Cai D, Cui Y, Tan T, Zou H, Guo W, Xie Y, Guo H, Chen SY, Ma X, Gou L, Cui H, Geng Y, Zhang M, Ye G, Zhong Z, Ren Z, Hu Y, Wang Y, Deng J, Yu S, Cao S, Wanapat M, Fang J, Wang Z, Zuo Z. Metagenomics Reveals That Intravenous Injection of Beta-Hydroxybutyric Acid (BHBA) Disturbs the Nasopharynx Microflora and Increases the Risk of Respiratory Diseases. Front Microbiol 2021; 11:630280. [PMID: 33613471 PMCID: PMC7892611 DOI: 10.3389/fmicb.2020.630280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
It is widely accepted that maintenance of microbial diversity is essential for the health of the respiratory tract; however, there are limited reports on the correlation between starvation and respiratory tract microbial diversity. In the present study, saline/β-hydroxybutyric acid (BHBA) intravenous injection after dietary restriction was used to imitate different degrees of starvation. A total of 13 healthy male yaks were imposed to different dietary restrictions and intravenous injections, and their nasopharyngeal microbiota profiles were obtained by metagenomic shotgun sequencing. In healthy yaks, the main dominant phyla were Proteobacteria (33.0%), Firmicutes (22.6%), Bacteroidetes (17.2%), and Actinobacteria (13.2%); the most dominated species was Clostridium botulinum (10.8%). It was found that 9 days of dietary restriction and 2 days of BHBA injection (imitating severe starvation) significantly decreased the microbial diversity and disturbed its structure and functional composition, which increased the risk of respiratory diseases. This study also implied that oral bacteria played an important role in maintaining nasopharynx microbial homeostasis. In this study, the correlation between starvation and nasopharynx microbial diversity and its potential mechanism was investigated for the first time, providing new ideas for the prevention of respiratory diseases.
Collapse
Affiliation(s)
- Jiancheng Qi
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dongjie Cai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yaocheng Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tianyu Tan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Huawei Zou
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Wei Guo
- Department of Clinical Laboratory, Chengdu Medical College, Chengdu, China
| | - Yue Xie
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shi-Yi Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiaoping Ma
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liping Gou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ming Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Gang Ye
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhijun Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhihua Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanchun Hu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ya Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shumin Yu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Suizhong Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Metha Wanapat
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhisheng Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
8
|
Ma J, Shah AM, Wang Z, Hu R, Zou H, Wang X, Cao G, Peng Q, Xue B, Wang L, Zhao S, Kong X. Comparing the gastrointestinal barrier function between growth-retarded and normal yaks on the Qinghai-Tibetan Plateau. PeerJ 2020; 8:e9851. [PMID: 32953274 PMCID: PMC7474896 DOI: 10.7717/peerj.9851] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
Background Yak (Bos grunniens) is an ancient bovine species on the Qinghai-Tibetan Plateau. Due to extremely harsh condition in the plateau, the growth retardation of yaks commonly exist, which can reduce the incomes of herdsman. The gastrointestinal barrier function plays a vital role in the absorption of nutrients and healthy growth. Functional deficiencies of the gastrointestinal barrier may be one of the contributors for yaks with growth retardation. Methods To this end, we compared the growth performance and gastrointestinal barrier function of growth-retarded (GRY) and normal yaks (GNY) based on average daily gain (ADG), serum parameters, tissue slice, real-time PCR, and western blotting, with eight yaks in each group. Results GRY exhibited lower (P < 0.05) average daily gain as compared to GNY. The diamine oxidase, D-lactic acid, and lipopolysaccharide concentrations in the serum of GRY were significantly higher (P < 0.05) than those of GNY. Compared to GNY, the papillae height in the rumen of GRY exhibited lower (P = 0.004). In jejunum, with the exception of higher villus height, width, and surface area in GNY, numerical difference (P = 0.61) was detected between two groups for crypt depth. Both in rumen and jejunum, the mRNA expression of interleukin-1beta in GRY was markedly higher (P < 0.05) than that in GNY, but an opposite trend was found in interleukin-10 expression. Moreover, GRY showed a higher (P < 0.05) tumor necrosis factor-alpha mRNA expression in the rumen. The claudin-1 (CLDN1), occludin (OCLN), and zonula occludens-1 (ZO1) expressions of GRY in rumen and jejunum were significantly down-regulated (P < 0.05) as compared to GNY. The correlation analysis identified that in rumen and jejunum, there was a positive correlation between interleukin-10 and CLDN1, OCLN, and ZO1 mRNA expressions, but the tumor necrosis factor-alpha was negatively correlated with CLDN1, OCLN, and ZO1. In the rumen, the ADG was positively correlated with papillae surface area, and a same relationship between ADG and CLDN1, OCLN, and ZO1 expressions was found. Conclusion The results indicated that the ruminal and jejunal barrier functions of GRY are disrupted as compared to GNY. In addition, our study provides a potential solution for promoting the growth of GRY by enhancing the gastrointestinal barrier function.
Collapse
Affiliation(s)
- Jian Ma
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Ali Mujtaba Shah
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhisheng Wang
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Rui Hu
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Huawei Zou
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xueying Wang
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Guang Cao
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Quanhui Peng
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Bai Xue
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Lizhi Wang
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Suonan Zhao
- Haibei Demonstration Zone of Plateau Modern Ecological Animal Husbandry Science and Technology, Haibei, China
| | - Xiangying Kong
- Haibei Demonstration Zone of Plateau Modern Ecological Animal Husbandry Science and Technology, Haibei, China
| |
Collapse
|