1
|
Furukawa R, Tozaki T, Kikuchi M, Ishige T, Takahashi Y, Fukui E, Kakoi H. A method for detecting gene doping in horse sports without DNA extraction. Drug Test Anal 2024. [PMID: 38853330 DOI: 10.1002/dta.3745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/09/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
Gene doping is prohibited in horse sports and can involve the administration of exogenous genes, called transgenes, to postnatal animals. Quantitative polymerase chain reaction (qPCR) methods have been developed to detect gene doping; however, these generally require DNA extraction from the plasma prior to qPCR. In this study, we developed two methods, direct droplet digital PCR (ddPCR) and nested ddPCR, to detect the equine erythropoietin (EPO) transgene without DNA extraction. Direct ddPCR used pretreated plasma and PCR to detect the EPO transgene spiked at 10 copies/μL. Nested ddPCR utilised pre-amplification using nontreated plasma, purification of PCR products and PCR to detect the EPO transgene spiked at 1 copy/μL in plasma. These methods successfully detected the EPO transgene after intramuscular injection into horses. Since each method has different detection sensitivity, the combined use of direct ddPCR for screening and nested ddPCR for confirmation may complement each other and prevent the occurrence of false positives, allowing the reliable detection of gene-doped substances. One advantage of these methods is the small amount of sample required, approximately 2.2-5.0 μl, owing to the lack of a DNA extraction step. Therefore, these tests could be applied to small volume samples as an alternative to conventional gene doping tests.
Collapse
Affiliation(s)
- Risako Furukawa
- Genetic Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Tochigi, Japan
| | - Teruaki Tozaki
- Genetic Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Tochigi, Japan
| | - Mio Kikuchi
- Genetic Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Tochigi, Japan
| | - Taichiro Ishige
- Genetic Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Tochigi, Japan
| | - Yuji Takahashi
- Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan
| | - Emiko Fukui
- School of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, Japan
| | - Hironaga Kakoi
- Genetic Analysis Department, Laboratory of Racing Chemistry, Utsunomiya, Tochigi, Japan
| |
Collapse
|
2
|
Kolahi Azar H, Imanpour A, Rezaee H, Ezzatifar F, Zarei-Behjani Z, Rostami M, Azami M, Behestizadeh N, Rezaei N. Mesenchymal stromal cells and CAR-T cells in regenerative medicine: The homing procedure and their effective parameters. Eur J Haematol 2024; 112:153-173. [PMID: 37254607 DOI: 10.1111/ejh.14014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 06/01/2023]
Abstract
Mesenchymal stromal cells (MSCs) and chimeric antigen receptor (CAR)-T cells are two core elements in cell therapy procedures. MSCs have significant immunomodulatory effects that alleviate inflammation in the tissue regeneration process, while administration of specific chemokines and adhesive molecules would primarily facilitate CAR-T cell trafficking into solid tumors. Multiple parameters affect cell homing, including the recipient's age, the number of cell passages, proper cell culture, and the delivery method. In addition, several chemokines are involved in the tumor microenvironment, affecting the homing procedure. This review discusses parameters that improve the efficiency of cell homing and significant cell therapy challenges. Emerging comprehensive mechanistic strategies such as non-systemic and systemic homing that revealed a significant role in cell therapy remodeling were also reviewed. Finally, the primary implications for the development of combination therapies that incorporate both MSCs and CAR-T cells for cancer treatment were discussed.
Collapse
Affiliation(s)
- Hanieh Kolahi Azar
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Aylar Imanpour
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hanieh Rezaee
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ezzatifar
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Molecular and Cell Biology Research Center, Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zeinab Zarei-Behjani
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, Advanced School of Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadreza Rostami
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Food Science and Nutrition Group (FSAN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahmoud Azami
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Behestizadeh
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
3
|
Han AR, Shin HR, Kweon J, Lee SB, Lee SE, Kim EY, Kweon J, Chang EJ, Kim Y, Kim SW. Highly efficient genome editing via CRISPR-Cas9 ribonucleoprotein (RNP) delivery in mesenchymal stem cells. BMB Rep 2024; 57:60-65. [PMID: 38053293 PMCID: PMC10828435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/18/2023] [Accepted: 08/31/2023] [Indexed: 12/07/2023] Open
Abstract
The CRISPR-Cas9 system has significantly advanced regenerative medicine research by enabling genome editing in stem cells. Due to their desirable properties, mesenchymal stem cells (MSCs) have recently emerged as highly promising therapeutic agents, which properties include differentiation ability and cytokine production. While CRISPR-Cas9 technology is applied to develop MSC-based therapeutics, MSCs exhibit inefficient genome editing, and susceptibility to plasmid DNA. In this study, we compared and optimized plasmid DNA and RNP approaches for efficient genome engineering in MSCs. The RNP-mediated approach enabled genome editing with high indel frequency and low cytotoxicity in MSCs. By utilizing Cas9 RNPs, we successfully generated B2M-knockout MSCs, which reduced T-cell differentiation, and improved MSC survival. Furthermore, this approach enhanced the immunomodulatory effect of IFN-r priming. These findings indicate that the RNP-mediated engineering of MSC genomes can achieve high efficiency, and engineered MSCs offer potential as a promising therapeutic strategy. [BMB Reports 2024; 57(1): 60-65].
Collapse
Affiliation(s)
- A Reum Han
- Department of Translational Medicine, Seoul 05505, Korea
- Department of Biochemistry and Molecular Biology, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Ha Rim Shin
- Department of Cell and Genetic Engineering, Seoul 05505, Korea
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jiyeon Kweon
- Department of Cell and Genetic Engineering, Seoul 05505, Korea
| | - Soo Been Lee
- Department of Biochemistry and Molecular Biology, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Sang Eun Lee
- Department of Biochemistry and Molecular Biology, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Eun-Young Kim
- Department of Biochemistry and Molecular Biology, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jiyeon Kweon
- Department of Cell and Genetic Engineering, Seoul 05505, Korea
| | - Eun-Ju Chang
- Department of Biochemistry and Molecular Biology, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Yongsub Kim
- Department of Cell and Genetic Engineering, Seoul 05505, Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Center for Cell therapy, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, Seoul 05505, Korea
| | - Seong Who Kim
- Department of Biochemistry and Molecular Biology, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Center for Cell therapy, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, Seoul 05505, Korea
| |
Collapse
|
4
|
Haughan J, Ortved KF, Robinson MA. Administration and detection of gene therapy in horses: A systematic review. Drug Test Anal 2023; 15:143-162. [PMID: 36269665 DOI: 10.1002/dta.3394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/30/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022]
Abstract
Gene therapy uses genetic modification of cells to produce a therapeutic effect. Defective or missing genes can be repaired or replaced, or gene expression can be modified using a variety of technologies. Repair of defective genes can be achieved using specialized gene editing tools. Gene addition promotes gene expression by introducing synthetic copies of genes of interest (transgenes) into cells where they are transcribed and translated into therapeutic proteins. Protein production can also be modified using therapies that regulate gene expression. Gene therapy is currently prohibited in both human and equine athletes because of the potential to induce production of performance-enhancing proteins in the athlete's body, also referred to as "gene doping." Detection of gene doping is challenging and necessitates development of creative, novel analytical methods for doping control. Methods for detection of gene doping must be specific to and will vary depending on the type of gene therapy. The purpose of this paper is to present the results of a systematic review of gene editing, gene therapy, and detection of gene doping in horses. Based on the published literature, gene therapy has been administered to horses in a large number of experimental studies and a smaller number of clinical cases. Detection of gene therapy is possible using a combination of PCR and sequencing technologies. This summary can provide a basis for discussion of appropriate and inappropriate uses for gene therapy in horses by the veterinary community and guide expansion of methods to detect inappropriate uses by the regulatory community.
Collapse
Affiliation(s)
- Joanne Haughan
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, Pennsylvania, USA
| | - Kyla F Ortved
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, Pennsylvania, USA
| | - Mary A Robinson
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, Pennsylvania, USA.,Pennsylvania Equine Toxicology & Research Center, West Chester University, West Chester, Pennsylvania, USA
| |
Collapse
|
5
|
CRISPR/Cas9-engineered mesenchymal stromal/stem cells and their extracellular vesicles: A new approach to overcoming cell therapy limitations. Biomed Pharmacother 2022; 156:113943. [DOI: 10.1016/j.biopha.2022.113943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
|