1
|
Lan R, Wei L, Yu H, Jiang P, Zhao Z. Age-Related Changes in Hepatic Lipid Metabolism and Abdominal Adipose Deposition in Yellow-Feathered Broilers Aged from 1 to 56 Days. Animals (Basel) 2023; 13:3860. [PMID: 38136897 PMCID: PMC10740587 DOI: 10.3390/ani13243860] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The objective of this study was to evaluate the age-related changes in hepatic lipid metabolism, adipocyte hyperplasia, hypertrophy, and lipid metabolism in the abdominal adipose tissue of yellow-feathered broilers. Blood, liver, and abdominal adipose samples were collected on days 1, 7, 14, 21, 28, 35, 42, 49, and 56. Body, liver, and abdominal weight increased (p < 0.05) with age-related changes. The triacylglycerol content peaked on day 14, and total cholesterol content peaked on day 56. The adipocyte diameter and area peaked on day 56, and total DNA content peaked on day 7. The age-related changes in hepatic lipogenesis-related gene (ChREBP, SREBP-1c, ACC, FAS, SCD1) expression mainly occurred during days 1 to 21, hepatic lipolysis-related gene (CPT1, LPL, ApoB) expression mainly occurred during days 1 to 14, and abdominal adipose-deposition-related gene (PPARα, CPT1, LPL, PPARγ, C/EBPβ) expression occurred during days 1 to 14. These results demonstrated a dynamic pattern of hepatic lipid metabolism and abdominal adipose deposition in yellow-feathered broilers, which provides practical strategies to regulate hepatic lipid metabolism and reduce abdominal adipose deposition in yellow-feathered broilers.
Collapse
Affiliation(s)
| | | | | | | | - Zhihui Zhao
- Department of Animal Science and Technology, College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.L.); (L.W.); (H.Y.); (P.J.)
| |
Collapse
|
2
|
Zhong Y, Ma T, Fu Z, Chen A, Yu J, Huang Y, Fu J. Effects of Hydrogen Peroxide-Induced Oxidative Stress on Intestinal Morphology, Redox Status, and Related Molecules in Squabs. Animals (Basel) 2023; 13:ani13040749. [PMID: 36830536 PMCID: PMC9952636 DOI: 10.3390/ani13040749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
The purpose of this study was to evaluate the potential effect of oxidative stress on the intestine of squabs, and to explore the molecular mechanisms. A total of 360 1-day-old squabs were divided evenly into five different groups (n = 72/group): control, negative control, low, medium, and high dose groups. On the 3rd, 5th, and 7th days, squabs in the control group were not effectively treated and the negative control group were intraperitoneally injected with normal saline, whereas the H2O2 group was injected with H2O2 of 2.0, 2.5, and 3.0 mmol/kg BW respectively. On the 21st day, the serum and duodenum were collected for further analysis. The results indicated that, compared with the control group, H2O2 caused squabs weight loss and intestinal morphology damage, and these effects were enhanced with an increase in dose. Further examination revealed that the contents of oxidative stress markers in both the serum and duodenum of the H2O2 group were significantly enhanced as the dose was increased. In addition, H2O2 exposure also resulted in the lower mRNA expression of Occludin, ZO-1, Beclin1, Atg5, and Caspase-3, but the expression of Claudin2 and Bcl-2 was decreased in comparison to the control group. These findings suggested that duodenal oxidative damage was accompanied by weight loss, changes in intestinal morphology, redox status imbalance, apoptosis as well as autophagy of intestinal cells, with, effects of 3.0 mmol/kg BW of H2O2 being the most severe.
Collapse
Affiliation(s)
- Yajing Zhong
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Tingting Ma
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhiqi Fu
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Ailing Chen
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jiahao Yu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yanhua Huang
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence: (Y.H.); (J.F.)
| | - Jing Fu
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Correspondence: (Y.H.); (J.F.)
| |
Collapse
|
3
|
Xu Q, Zhao J, Jian H, Ye J, Gong M, Zou X, Dong X. Linoleic acid ameliorates intestinal mucosal barrier injury in early weaned pigeon squabs (Columba livia). J Anim Sci 2023; 101:skad125. [PMID: 37186172 PMCID: PMC10195202 DOI: 10.1093/jas/skad125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/22/2023] [Indexed: 05/17/2023] Open
Abstract
The study aimed to investigate whether linoleic acid could improve the intestinal barrier function of squabs under weaning stress conditions. Totally 320 7-d-old weaned squabs were randomly divided into four treatment groups, including control group (CON), 0.7% linoleic acid addition group (LA007), 1.4% linoleic acid addition group (LA014) and 2.1% linoleic acid addition group (LA021). At 21 d, eight squabs were randomly selected from each treatment group for sampling and determination. The results showed that adding linoleic acid could improve (P < 0.05) the body weight of weaned squabs, and LA014 had the best effect. With the increase of linoleic acid dosage, villi height and villi area increased linearly or quadratically (P < 0.05), and reached the maximum in LA021 or LA014, respectively. The linoleic acid supplementation could improve the intestinal tight junction of weaned squabs, and the LA014 was the most significant (P < 0.05). With the linoleic acid increasing, the levels of intestinal IL-6 and TNF-α decreased linearly (P < 0.05), while intestinal IL-10 increased quadratically (P < 0.05) and reached the maximum in LA014. Serum endotoxin and diamine oxidase levels decreased linearly (P < 0.05) and reached the lowest level in LA014. The ultrastructure of villi revealed that the length of ileal microvilli in LA014 was significantly increased (P < 0.05) and the microvilli became dense, and the mitochondria in epithelial cells returned to normal state. Further exploring the mechanism of linoleic acid alleviating intestinal injury caused by weaning stress in squabs, it was found that linoleic acid down-regulated (P < 0.05) the relative protein expression of TLR4, MyD88, phosphorylated JNK, and phosphorylated p38, reducing secretion of pro-inflammatory factors IL-6 and TNF-α. This study indicated that linoleic acid could alleviate intestinal barrier injury of early weaned squabs by down-regulating TLR4-MyD88-JNK/p38-IL6/TNF-α pathway.
Collapse
Affiliation(s)
- Qianqian Xu
- Key Laboratory of Characteristic Agricultural Product Quality and Hazardous Substance Control Technology of Zhejiang Province, Institute of Food Nutrition and Quality Safety, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Jin Zhao
- Key Laboratory of Characteristic Agricultural Product Quality and Hazardous Substance Control Technology of Zhejiang Province, Institute of Food Nutrition and Quality Safety, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Huafeng Jian
- Key laboratory for Molecular Animal Nutrition of Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| | - Jiangcheng Ye
- Key Laboratory of Characteristic Agricultural Product Quality and Hazardous Substance Control Technology of Zhejiang Province, Institute of Food Nutrition and Quality Safety, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Mingxiu Gong
- Key Laboratory of Characteristic Agricultural Product Quality and Hazardous Substance Control Technology of Zhejiang Province, Institute of Food Nutrition and Quality Safety, College of Life Science, China Jiliang University, Hangzhou 310018, China
| | - Xiaoting Zou
- Key laboratory for Molecular Animal Nutrition of Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| | - Xinyang Dong
- Key laboratory for Molecular Animal Nutrition of Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Feed Science Institute, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou 310058, China
| |
Collapse
|
4
|
Wang Z, Zhao D, Qin S, Shi Z, Li X, Wang Y, Shao Y. Effects of Dietary Supplementation with Iron in Breeding Pigeons on the Blood Iron Status, Tissue Iron Content, and Full Expression of Iron-Containing Enzymes of Squabs. Biol Trace Elem Res 2022:10.1007/s12011-022-03530-x. [PMID: 36542305 DOI: 10.1007/s12011-022-03530-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
This study was aimed at investigating the effects of diet iron levels on the blood iron status, tissue iron content, mRNA levels, and the activity of iron-containing enzymes in different tissues of squabs. A total of 120 pairs of healthy Silver Feather King parental pigeons with similar average body weight and egg production were randomly divided into 5 groups with 8 replicates and 3 pairs of pigeons per replicate. The five groups of breeding pigeons were fed an iron-unsupplemented basal diet and basal diet supplemented with 75, 150, 300, and 600 mg iron/kg, respectively. The diets were fed in the form of granular feed based on corn, soybean meal, wheat, and sorghum. A broken line model was used for regression analysis. The results showed that plasma iron (PI), serum ferritin, iron contents in crop milk and liver, liver catalase (CAT) activity, and heart succinate dehydrogenase (SDH) activity were affected by iron levels (P < 0.05). And PI, serum ferritin, iron content in crop milk, and heart SDH activity increased quadratically (P < 0.05), but the iron content and CAT activity in the liver decreased quadratically (P < 0.005) as dietary iron level increased. According to the broken-line model of serum ferritin fitting (P < 0.002), the optimal dietary iron level of breeding pigeons was estimated to be 193 mg/kg. In conclusion, serum ferritin is a sensitive index to evaluate the iron requirement of the breeding pigeon with two squabs, and the recommended iron supplemental level is 193 mg/kg.
Collapse
Affiliation(s)
- Zheng Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Dongdong Zhao
- Faculty of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, Gansu Province, China
| | - Shizhen Qin
- Faculty of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, Gansu Province, China
| | - Zhaoguo Shi
- Faculty of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, Gansu Province, China
| | - Xing Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yangyang Wang
- Faculty of Animal Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, Gansu Province, China
| | - Yuxin Shao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
5
|
Xu Q, Jian H, Zhao W, Li J, Zou X, Dong X. Early Weaning Stress Induces Intestinal Microbiota Disturbance, Mucosal Barrier Dysfunction and Inflammation Response Activation in Pigeon Squabs. Front Microbiol 2022; 13:877866. [PMID: 35711747 PMCID: PMC9194612 DOI: 10.3389/fmicb.2022.877866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022] Open
Abstract
Early weaning stress has been reported to impair intestinal health in mammals. Like mammals, weaning of the pigeon squab, an altricial bird, is associated with social, environmental and dietary stress. However, understanding of weaning stress on intestinal functions is very limited in altricial birds, especially in squabs. This study was aimed to evaluate the effects of early weaning stress on intestinal microbiota diversity, architecture, permeability, the first line defense mechanisms, mucosal barrier functions, and immune cell responses. A total of 192 newly hatched squabs were randomly allocated into two groups, one weaned on day 7 and the other remained with the parent pigeons. Mucosal tissue and digesta in ileum, as well as blood samples, were collected from squabs (n = 8) on days 1, 4, 7, 10, and 14 postweaning. Our results showed that weaning stress induced immediate and long-term deleterious effects on both growth performance and intestinal barrier functions of squabs. Early weaning significantly increased ileal bacterial diversity and alters the relative abundance of several bacteria taxa. Weaning stress can also cause morphological and functional changes in ileum, including an atrophy in villi, an increase in permeability, and a variation in the mRNA expression of genes encoding mucins, immunoglobulins, tight junction proteins, toll-like receptors, and cytokines, as well as the concentration of secretory IgA. We concluded that the impaired intestinal barrier functions accompanied with early weaning stress seems to be the main reason for the poor growth rate after weaning in squabs. In addition, the disturbance of intestinal microbiota of early weaning stress in squabs coincided with dysfunction of intestinal mucosal barrier and activation of inflammation cell responses that were possibly mediated via the activation of toll-like receptors.
Collapse
Affiliation(s)
- Qianqian Xu
- Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou, China
| | - Huafeng Jian
- Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou, China
| | - Wenyan Zhao
- Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou, China
| | - Jiankui Li
- Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou, China
| | - Xiaoting Zou
- Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou, China
| | - Xinyang Dong
- Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou, China
| |
Collapse
|
6
|
Tkachenko H, Kurhaluk N, Hetmański T, Włodarkiewicz A, Tomin V. Changes in energetic metabolism and lysosomal destruction in the skeletal muscle and cardiac tissues of pigeons (Columba livia f. urbana) from urban areas of the northern Pomeranian region (Poland). ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1170-1185. [PMID: 34076799 PMCID: PMC8295091 DOI: 10.1007/s10646-021-02423-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/15/2021] [Indexed: 05/05/2023]
Abstract
The aim of the present study was to evaluate the biochemical responses of the skeletal muscle and cardiac tissues of the urban pigeon as a bioindicator organism tested in diverse environments (Szpęgawa as a rural environment and Słupsk as an urban environment, Pomeranian Voivodeship, northern Poland), resulting in changes in the level of lipid peroxidation at the initial and final stages of this process and the activities of Krebs cycle enzymes (succinate dehydrogenase, pyruvate dehydrogenase, isocitrate dehydrogenase, and alfa-ketoglutarate dehydrogenase). Szpęgawa village was chosen due to the intensive use of the European motorway A1 with significant traffic and pollution levels. The concentration of Pb was higher in the soil and feathers of pigeons nesting in the polluted areas (Szpęgawa). Our studies have shown that the presence of lead in soil and feathers of the pigeons resulted in the activation of lipid peroxidation, destabilization and increased activity of lysosomal membranes, and activation of mitochondrial enzymes of the Krebs cycle with energy deficiency (reduction of ATP levels) in cardiac and skeletal muscle tissues simultaneously.
Collapse
Affiliation(s)
- Halyna Tkachenko
- Department of Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Słupsk, Poland
| | - Natalia Kurhaluk
- Department of Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Słupsk, Poland.
| | - Tomasz Hetmański
- Department of Earth Sciences, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Słupsk, Poland
| | - Agnieszka Włodarkiewicz
- Department of Physics, Institute of Science and Technology, Pomeranian University in Słupsk, Słupsk, Poland
| | - Vladimir Tomin
- Department of Physics, Institute of Science and Technology, Pomeranian University in Słupsk, Słupsk, Poland
| |
Collapse
|