1
|
Chacón RD, Sánchez-Llatas CJ, L Pajuelo S, Diaz Forero AJ, Jimenez-Vasquez V, Médico JA, Soto-Ugaldi LF, Astolfi-Ferreira CS, Piantino Ferreira AJ. Molecular characterization of the meq oncogene of Marek's disease virus in vaccinated Brazilian poultry farms reveals selective pressure on prevalent strains. Vet Q 2024; 44:1-13. [PMID: 38465827 DOI: 10.1080/01652176.2024.2318198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Marek's disease virus (MDV) has become an increasingly virulent pathogen in the poultry industry despite vaccination efforts to control it. Brazil has experienced a significant rise of Marek's disease (MD) outbreaks in recent years. Our study aimed to analyze the complete meq gene sequences to understand the molecular epidemiological basis of MD outbreaks in Brazilian vaccinated layer farms. We detected a high incidence rate of visceral MD (67.74%) and multiple circulating MDV strains. The most prevalent and geographically widespread genotype presented several clinical and molecular characteristics of a highly virulent strain and evolving under positive selective pressure. Phylogenetic and phylogeographic analysis revealed a closer relationship with strains from the USA and Japan. This study sheds light on the circulation of MDV strains capable of infecting vaccinated birds. We emphasize the urgency of adopting preventive measures to manage MDV outbreaks threatening the poultry farming industry.
Collapse
Affiliation(s)
- Ruy D Chacón
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Christian J Sánchez-Llatas
- Department of Genetics, Physiology, and Microbiology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | | | - Andrea J Diaz Forero
- Department of Pathology, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Jack A Médico
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Luis F Soto-Ugaldi
- Tri-Institutional Program in Computational Biology and Medicine, New York, NY, USA
| | | | | |
Collapse
|
2
|
Al-Zebeeby A, Abbas AH, Alsaegh HA, Alaraji FS. The First Record of an Aggressive Form of Ocular Tumour Enhanced by Marek's Disease Virus Infection in Layer Flock in Al-Najaf, Iraq. Vet Med Int 2024; 2024:1793189. [PMID: 39376215 PMCID: PMC11458278 DOI: 10.1155/2024/1793189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/13/2024] [Indexed: 10/09/2024] Open
Abstract
Marek's disease (MD) is a highly infectious poultry illness with a tendency to form tumours in peripheral nerves and internal organs of affected birds. Tumours accompany MD, mostly caused by oncogenic Gallid alpha herpesvirus 2 (MD Herpes virus serotype I). Studies on avian tumours associated with MD infection are limited in Iraq. In the presented study, the positive samples of ocular tumour were 168 out of 282 MD positive samples, which accomplished in farm suffered from an unexpectedly high mortality rate. We investigated a rapidly developed tumour mass that was observed in an MD-vaccinated layer flock that showed obvious clinical signs of MD, accompanied by forming a small lump in one eye at age 21 weeks, which developed to a big lump at week 28 of age, leading to death. The diagnosis MD infection was confirmed by a Polymerase Chain Reaction (PCR) amplification of a specific region of the target gene meq of the causative agent, followed by Sanger sequencing and BLASTn search of the sequence against the NCBI nucleic acid database, resulted in Gallid alpha herpes virus 2 strain, and according to the phylogenetic analysis, the sequence from this study was uniquely clustered in its own branch in the tree. Histopathological examination of the ocular tumour core revealed aggregation of neoplastic cells and haemorrhage that replaced the normal eye tissue, as well as early tumour formation in internal organs such as the lung and liver. In addition, abnormal lesions are susceptible to tumours in the gizzard and spleen. To our knowledge, this is the first record of an aggressive MD virus infection-mediated ocular tumour in a layer flock in Al-Najaf province, Iraq.
Collapse
Affiliation(s)
- Aoula Al-Zebeeby
- Department of Pathology and Poultry DiseasesFaculty of Veterinary MedicineUniversity of Kufa, Al-Najaf Al-Ashraf, Kufa, Iraq
| | - Ali Hadi Abbas
- Department of Veterinary MicrobiologyFaculty of Veterinary MedicineUniversity of Kufa, Al-Najaf Al-Ashraf, Kufa, Iraq
| | - Haider Abas Alsaegh
- Department of Pathology and Poultry DiseasesFaculty of Veterinary MedicineUniversity of Kufa, Al-Najaf Al-Ashraf, Kufa, Iraq
| | - Furkan Sabbar Alaraji
- Department of Pathology and Poultry DiseasesFaculty of Veterinary MedicineUniversity of Kufa, Al-Najaf Al-Ashraf, Kufa, Iraq
| |
Collapse
|
3
|
Gao Q, Li S, Sun W, Yan H, Wang Y, Chang S, Zhao P. Immunopotentiating effect of lentinan on chicks and its inhibitory effect on Marek's disease virus infection. Poult Sci 2024; 103:103840. [PMID: 38772093 PMCID: PMC11131074 DOI: 10.1016/j.psj.2024.103840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/23/2024] [Accepted: 05/04/2024] [Indexed: 05/23/2024] Open
Abstract
Marek's disease virus (MDV) is a significant tumorigenic virus that causes severe immunosuppression in chickens. Lentinan (LNT) is an immunomodulator containing β-glucans and is widely used in areas such as antiviral, anticancer, and immune regulation. To investigate the immunomodulatory effects of LNT on specific pathogen-free (SPF) chicks and its potential to inhibit MDV infection, we conducted an MDV challenge experiment and observed the immune-enhancing effect of LNT on SPF chicks. The results showed that LNT promoted the growth and development of SPF chicks and induced the upregulation of cytokines such as Mx protein, interferon-γ (INF-γ), tumor necrosis factor-α (TNF-α), and interleukin-2 (IL-2). The specific gravity of CD4+ T-lymphocytes and CD8+ T-lymphocytes and their ratios were also significantly upregulated. Prophylactic use of LNT inhibited MDV replication in lymphocytes, liver, and spleen. It also alleviated MDV-induced weight loss and hepatosplenomegaly in SPF chicks. The present study confirms that LNT can enhance the levels of innate and cellular immunity in SPF chicks and contributes to the inhibition of MDV replication in vivo and mitigation of immune organ damage in chicks due to MDV infection. This provides an adjunctive measure for better control of MDV infection.
Collapse
Affiliation(s)
- Qiming Gao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, 271018, China
| | - Shun Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, 271018, China
| | - Wanli Sun
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, 271018, China
| | - Hongjian Yan
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, 271018, China
| | - Yixin Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, 271018, China
| | - Shuang Chang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, 271018, China
| | - Peng Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, 271018, China.
| |
Collapse
|
4
|
Davidson I, Lupini C, Catelli E, Quaglia G, Maddaloni L, Mescolini G. Virulence evaluation of Israeli Marek's disease virus isolates from commercial poultry using their meq gene sequence. Virus Genes 2024; 60:32-43. [PMID: 38184501 DOI: 10.1007/s11262-023-02042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/17/2023] [Indexed: 01/08/2024]
Abstract
Fifty-seven Gallid alphaherpesvirus 2 (GaHV-2) isolates, collected during a 30-year period (1990-2019) from commercial poultry flocks affected by Marek's disease (MD), were molecularly characterised. The GaHV-2 meq gene was amplified and sequenced to evaluate the virus virulence, based on the number of PPPPs within the proline-rich repeats (PRRs) of its transactivation domain. The present illustration of virus virulence evaluation on a large scale of field virus isolates by molecular analysis exemplifies the practical benefit and usefulness of the molecular marker in commercial GaVH-2 isolates. The alternative assay of GaVH-2 virulence pathotyping is the classical Gold Standard ADOL method, which is difficult and impossible to employ on a large scale using the Specific Pathogen Free (SPF) chicks of the ADOL strains kept in isolators for two months. The phylogenetic analysis performed in the present study showed that the meq gene amino acid sequences of the 57 Israeli strains divide into 16 phylogenetic branches. The virulence evaluation was performed in comparison with 36 GaHV-2 prototype strains, previously characterised by the in vivo Gold Standard ADOL assay. The results obtained revealed that the GaHV-2 strains circulating in Israel have evolved into a higher virulence potential during the years, as the four-proline stretches number in the meq gene decreased over the investigated period, typically of very virulent virus prototypes. The present study supports the meq gene molecular markers for the assessment of field GaVH-2 strains virulence.
Collapse
Affiliation(s)
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Giulia Quaglia
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Luca Maddaloni
- Department of Public Health and Infectious Diseases, Sapienza, University of Rome, Rome, Italy
| | - Giulia Mescolini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
- Operating Unit of Animal Health and Hygiene of Livestock Production, Department of Public Health, AUSL della Romagna, Forlì, FC, Italy
| |
Collapse
|
5
|
Du X, Zhou D, Zhou J, Xue J, Cheng Z. RIOK3-mediated Akt phosphorylation facilitates synergistic replication of Marek's disease and reticuloendotheliosis viruses. Virulence 2022; 13:1184-1198. [PMID: 35795905 PMCID: PMC9331201 DOI: 10.1080/21505594.2022.2096247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Co-infection of Marek’s disease virus (MDV) and reticuloendotheliosis virus (REV) synergistically drives disease progression, yet little is known about the mechanism of the synergism. Here, we found that co-infection of REV and MDV increased their replication via the RIOK3-Akt pathway. Initially, we noticed that the viral titres of MDV and REV significantly increased in REV and MDV co-infected cells compared with single-infected cells. Furthermore, tandem mass tag peptide labelling coupled with LC/MS analysis showed that Akt was upregulated in REV and MDV co-infected cells. Overexpression of Akt promoted synergistic replication of MDV and REV. Conversely, inhibition of Akt suppressed synergistic replication of MDV and REV. However, PI3K inhibition did not affect synergistic replication of MDV and REV, suggesting that the PI3K/Akt pathway is not involved in the synergism of MDV and REV. In addition, we revealed that RIOK3 was recruited to regulate Akt in REV and MDV co-infected cells. Moreover, wild-type RIOK3, but not kinase-dead RIOK3, mediated Akt phosphorylation and promoted synergistic replication of MDV and REV. Our results illustrate that MDV and REV activated a novel RIOK3-Akt signalling pathway to facilitate their synergistic replication.
Collapse
Affiliation(s)
- Xusheng Du
- College of Veterinary Medicine, Shandong Agricultural University, China
| | - Defang Zhou
- College of Veterinary Medicine, Shandong Agricultural University, China
| | - Jing Zhou
- College of Veterinary Medicine, Shandong Agricultural University, China
| | - Jingwen Xue
- College of Veterinary Medicine, Shandong Agricultural University, China
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University, China
| |
Collapse
|
6
|
Gao L, Zheng S, Wang Y. The Evasion of Antiviral Innate Immunity by Chicken DNA Viruses. Front Microbiol 2021; 12:771292. [PMID: 34777325 PMCID: PMC8581555 DOI: 10.3389/fmicb.2021.771292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022] Open
Abstract
The innate immune system constitutes the first line of host defense. Viruses have evolved multiple mechanisms to escape host immune surveillance, which has been explored extensively for human DNA viruses. There is growing evidence showing the interaction between avian DNA viruses and the host innate immune system. In this review, we will survey the present knowledge of chicken DNA viruses, then describe the functions of DNA sensors in avian innate immunity, and finally discuss recent progresses in chicken DNA virus evasion from host innate immune responses.
Collapse
Affiliation(s)
- Li Gao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shijun Zheng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yongqiang Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Deng Q, Shi M, Li Q, Wang P, Li M, Wang W, Gao Y, Li H, Lin L, Huang T, Wei P. Analysis of the evolution and transmission dynamics of the field MDV in China during the years 1995-2020, indicating the emergence of a unique cluster with the molecular characteristics of vv+ MDV that has become endemic in southern China. Transbound Emerg Dis 2020; 68:3574-3587. [PMID: 33354907 DOI: 10.1111/tbed.13965] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/19/2020] [Accepted: 12/20/2020] [Indexed: 01/23/2023]
Abstract
Marek's disease (MD) continues to threaten the sustainability of the world poultry industry. In this study, the sequences of the meq gene of 220 MDV strains isolated during the years 1964-2020 were analysed, including 50 from our group plus 170 isolates from the GenBank. Analyses, using phylogenetic trees, amino acid (aa)-mutation screening, evolutionary studies and transmission dynamics were all performed. All strains were divided into two clusters (Clusters 1 and 2), and Cluster 1 includes the mild strains, the vaccine strains and the foreign virulent strains, while Cluster 2 was dominated by the Chinese field strains. Our study identified that the Chinese field strains in Cluster 2 during the years 1995-2020 likely originated in the 1980s from abroad, and the estimated genetic diversity of these strains experienced two growth phases in the years 2005-2007.5 and 2015-2017. Viral phylogeography identified 3 major geographic provincial regions for the Chinese field strains of Cluster 2: the Northeastern Region (Jilin, Liaoning and Heilongjiang), the East-central Region (Henan, Shandong and Jiangsu) and the Southern Region (Guangxi, Guangdong and Yunnan). The spread of Northeastern strains to East-central chicken flocks and the further spread from Guangxi to Guangdong are strongly indicated. The emergence of the mutations A88T and Q93R together in the Southern strains during the years 2017-2020 with molecular characteristics of vv+ MDV were also found later than those in the Northern strains. Overall, the Chinese field strains in Cluster 2 in southern China in recent years have been rapidly evolving. Guangxi Province has become an epicentre for these viruses and the chicken flocks in the Southern region have been facing the adverse effects of the emerging vv+ MDV.
Collapse
Affiliation(s)
- Qiaomu Deng
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Mengya Shi
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Qiuhong Li
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Peikun Wang
- Institute of Microbe and Host Health, Linyi University, Linyi, China
| | - Min Li
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Weiwei Wang
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Yanli Gao
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Haijuan Li
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Lulu Lin
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Teng Huang
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| | - Ping Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, China
| |
Collapse
|