1
|
Ma S, Ji D, Wang X, Yang Y, Shi Y, Chen Y. Transcriptomic Analysis Reveals Candidate Ligand-Receptor Pairs and Signaling Networks Mediating Intercellular Communication between Hair Matrix Cells and Dermal Papilla Cells from Cashmere Goats. Cells 2023; 12:1645. [PMID: 37371115 DOI: 10.3390/cells12121645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Hair fiber growth is determined by the spatiotemporally controlled proliferation, differentiation, and apoptosis of hair matrix cells (HMCs) inside the hair follicle (HF); however, dermal papilla cells (DPCs), the cell population surrounded by HMCs, manipulate the above processes via intercellular crosstalk with HMCs. Therefore, exploring how the mutual commutations between the cells are molecularly achieved is vital to understanding the mechanisms underlying hair growth. Here, based on our previous successes in cultivating HMCs and DPCs from cashmere goats, we combined a series of techniques, including in vitro cell coculture, transcriptome sequencing, and bioinformatic analysis, to uncover ligand-receptor pairs and signaling networks mediating intercellular crosstalk. Firstly, we found that direct cellular interaction significantly alters cell cycle distribution patterns and changes the gene expression profiles of both cells at the global level. Next, we constructed the networks of ligand-receptor pairs mediating intercellular autocrine or paracrine crosstalk between the cells. A few pairs, such as LEP-LEPR, IL6-EGFR, RSPO1-LRP6, and ADM-CALCRL, are found to have known or potential roles in hair growth by acting as bridges linking cells. Further, we inferred the signaling axis connecting the cells from transcriptomic data with the advantage of CCCExplorer. Certain pathways, including INHBA-ACVR2A/ACVR2B-ACVR1/ACVR1B-SMAD3, were predicted as the axis mediating the promotive effect of INHBA on hair growth via paracrine crosstalk between DPCs and HMCs. Finally, we verified that LEP-LEPR and IL1A-IL1R1 are pivotal ligand-receptor pairs involved in autocrine and paracrine communication of DPCs and HMCs to DPCs, respectively. Our study provides a comprehensive landscape of intercellular crosstalk between key cell types inside HF at the molecular level, which is helpful for an in-depth understanding of the mechanisms related to hair growth.
Collapse
Affiliation(s)
- Sen Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Engineering Research Center for Forage, Zhengzhou 450002, China
| | - Dejun Ji
- Key Laboratory for Animal Genetics and Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaolong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yuxin Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Engineering Research Center for Forage, Zhengzhou 450002, China
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
2
|
Comparative Analysis of mRNA and miRNA Expression between Dermal Papilla Cells and Hair Matrix Cells of Hair Follicles in Yak. Cells 2022; 11:cells11243985. [PMID: 36552749 PMCID: PMC9776824 DOI: 10.3390/cells11243985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
The interaction between the dermal papilla cells (DPCs) and epidermal hair matrix cells (HMCs) of hair follicles (HFs) is crucial for the growth and development of HFs, but the molecular mechanism is complex and remains unclear. MicroRNAs (miRNAs) are the key signaling molecules for cellular communication. In this study, the DPCs and HMCs of yak were isolated and cultured, and the differentially expressed mRNA and miRNA were characterized to analyze the molecular basis of the interaction between DPCs and HMCs during hair follicle (HF) development in yak. The mRNA differential expression and functional enrichment analysis revealed that there were significant differences between DPCs and HMCs, and they showed the molecular functional characteristics of dermal cells and epidermal cells, respectively. Multiple KEGG pathways related to HF development were enriched in the highly expressed genes in DPCs, while the pathways associated with microbiota and immunity were significantly enriched in the highly expressed genes in HMCs. By combining analysis with our previous 10× genomics single-cell transcriptome data, 39 marker genes of DPCs of yak were identified. A total of 123 relatively specifically expressed miRNAs were screened; among these, the miRNAs associated with HF development such as miR-143, miR-214, miR-125b, miR-31, and miR-200 were presented. In conclusion, the large changes in yak DPCs and HMCs for both mRNA and miRNA expression were revealed, and numerous specifically expressed mRNAs and miRNAs in DPCs or HMCs were identified, which may contribute to the interaction and cellular communication between DPCs and HMCs during HF development in yak.
Collapse
|
3
|
Dias IE, Viegas CA, Requicha JF, Saavedra MJ, Azevedo JM, Carvalho PP, Dias IR. Mesenchymal Stem Cell Studies in the Goat Model for Biomedical Research-A Review of the Scientific Literature. BIOLOGY 2022; 11:1276. [PMID: 36138755 PMCID: PMC9495984 DOI: 10.3390/biology11091276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells, defined by their ability to self-renew, while maintaining the capacity to differentiate into different cellular lineages, presumably from their own germinal layer. MSCs therapy is based on its anti-inflammatory, immunomodulatory, and regenerative potential. Firstly, they can differentiate into the target cell type, allowing them to regenerate the damaged area. Secondly, they have a great immunomodulatory capacity through paracrine effects (by secreting several cytokines and growth factors to adjacent cells) and by cell-to-cell contact, leading to vascularization, cellular proliferation in wounded tissues, and reducing inflammation. Currently, MSCs are being widely investigated for numerous tissue engineering and regenerative medicine applications. Appropriate animal models are crucial for the development and evaluation of regenerative medicine-based treatments and eventual treatments for debilitating diseases with the hope of application in upcoming human clinical trials. Here, we summarize the latest research focused on studying the biological and therapeutic potential of MSCs in the goat model, namely in the fields of orthopedics, dermatology, ophthalmology, dentistry, pneumology, cardiology, and urology fields.
Collapse
Affiliation(s)
- Inês E. Dias
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, 5000-801 Vila Real, Portugal
| | - Carlos A. Viegas
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
- CECAV—Centre for Animal Sciences and Veterinary Studies, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisboa, Portugal
| | - João F. Requicha
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
- CECAV—Centre for Animal Sciences and Veterinary Studies, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisboa, Portugal
| | - Maria J. Saavedra
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Jorge M. Azevedo
- CECAV—Centre for Animal Sciences and Veterinary Studies, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisboa, Portugal
- Department of Animal Science, ECAV, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Pedro P. Carvalho
- CIVG—Vasco da Gama Research Center, University School Vasco da Gama (EUVG), Av. José R. Sousa Fernandes, Campus Universitário, Lordemão, 3020-210 Coimbra, Portugal
- Vetherapy—Research and Development in Biotechnology, 3020-210 Coimbra, Portugal
| | - Isabel R. Dias
- CITAB—Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, 5000-801 Vila Real, Portugal
- Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences (ECAV), UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
- CECAV—Centre for Animal Sciences and Veterinary Studies, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal
- AL4AnimalS—Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisboa, Portugal
| |
Collapse
|