1
|
Long J, Liu W, Fan X, Yang Y, Yang X, Tang Z. A comprehensive atlas of pig RNA editome across 23 tissues reveals RNA editing affecting interaction mRNA-miRNAs. G3 (BETHESDA, MD.) 2024; 14:jkae178. [PMID: 39090686 PMCID: PMC11457091 DOI: 10.1093/g3journal/jkae178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 04/30/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
RNA editing is a co-transcriptional/post-transcriptional modification that is mediated by the ADAR enzyme family. Profiling of RNA editing is very limited in pigs. In this study, we collated 3813 RNA-seq data from the public repositories across 23 tissues and carried out comprehensive profiling of RNA editing in pigs. In total, 127,927 A-to-I RNA-editing sites were detected. Our analysis showed that 98.2% of RNA-editing sites were located within repeat regions, primarily within the pig-specific SINE retrotransposon PRE-1/Pre0_SS elements. Subsequently, we focused on analyzing specific RNA-editing sites (SESs) in skeletal muscle tissues. Functional enrichment analyses suggested that they were enriched in signaling pathways associated with muscle cell differentiation, including DMD, MYOD1, and CAV1 genes. Furthermore, we discovered that RNA editing event in the 3'UTR of CFLAR mRNA influenced miR-708-5p binding in this region. In this study, the panoramic RNA-editing landscape of different tissues of pigs was systematically mapped, and RNA-editing sites and genes involved in muscle cell differentiation were identified. In summary, we identified modifications to pig RNA-editing sites and provided candidate targets for further validation.
Collapse
Affiliation(s)
- Jiajia Long
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528226, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Weiwei Liu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528226, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xinhao Fan
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528226, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Yalan Yang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xiaogan Yang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhonglin Tang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528226, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Arikawa LM, Mota LFM, Schmidt PI, Frezarim GB, Fonseca LFS, Magalhães AFB, Silva DA, Carvalheiro R, Chardulo LAL, Albuquerque LGD. Genome-wide scans identify biological and metabolic pathways regulating carcass and meat quality traits in beef cattle. Meat Sci 2024; 209:109402. [PMID: 38056170 DOI: 10.1016/j.meatsci.2023.109402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/19/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Genome association studies (GWAS) provides knowledge about the genetic architecture of beef-related traits that allow linking the target phenotype to genomic information aiding breeding decision. Thus, the present study aims to uncover the genetic mechanism involved in carcass (REA: rib eye area, BF: backfat thickness, and HCW: hot carcass weight) and meat quality traits (SF: shear-force, MARB: marbling score, and IMF: intramuscular fat content) in Nellore cattle. For this, 6910 young bulls with phenotypic information and 23,859 animals genotyped with 435 k markers were used to perform the weighted single-step GBLUP (WssGBLUP) approach, considering two iterations. The top 10 genomic regions explained 8.13, 11.81, and 9.58% of the additive genetic variance, harboring a total of 119, 143, and 95 positional candidate genes for REA, BF, and HCW, respectively. For meat quality traits, the top 10 windows explained a large proportion of the total genetic variance for SF (14.95%), MARB (17.56%), and IMF (21.41%) surrounding 92, 155, and 111 candidate genes, respectively. Relevant candidate genes (CAST, PLAG1, XKR4, PLAGL2, AQP3/AQP7, MYLK2, WWOX, CARTPT, and PLA2G16) are related to physiological aspects affecting growth, carcass, meat quality, feed intake, and reproductive traits by signaling pathways controlling muscle control, key signal metabolic molecules INS / IGF-1 pathway, lipid metabolism, and adipose tissue development. The GWAS results provided insights into the genetic control of the traits studied and the genes found are potential candidates to be used in the improvement of carcass and meat quality traits.
Collapse
Affiliation(s)
- Leonardo Machestropa Arikawa
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil.
| | - Lucio Flavio Macedo Mota
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Patrícia Iana Schmidt
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Gabriela Bonfá Frezarim
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Larissa Fernanda Simielli Fonseca
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Ana Fabrícia Braga Magalhães
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil; University of Jequitinhonha and Mucuri Valleys, Department of Animal Science, Rod. MG 367, Diamantina, MG 39100-000, Brazil
| | - Delvan Alves Silva
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil; University of Viçosa, Department of Animal Science, Av. PH Rolfs, Viçosa, MG 36570-900, Brazil
| | - Roberto Carvalheiro
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil
| | - Luis Artur Loyola Chardulo
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil; National Council for Science and Technological Development, Brasilia, DF 71605-001, Brazil
| | - Lucia Galvão de Albuquerque
- São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Department of Animal Science, Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, SP 14884-900, Brazil; National Council for Science and Technological Development, Brasilia, DF 71605-001, Brazil.
| |
Collapse
|
3
|
Yuan S, Tian S, Meng C, Ji F, Zhou B, Rushdi HE, Ye M. The Identification of Functional Genes Affecting Fat-Related Meat Traits in Meat-Type Pigeons Using Double-Digest Restriction-Associated DNA Sequencing and Molecular Docking Analysis. Animals (Basel) 2023; 13:3256. [PMID: 37893980 PMCID: PMC10603692 DOI: 10.3390/ani13203256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The Chinese indigenous Shiqi (SQ) pigeon and the imported White King (WK) pigeon are two meat-type pigeon breeds of economical and nutritional importance in China. They displayed significant differences in such meat quality traits as intramuscular fat (IMF) content and fatty acid (FA) compositions in the breast muscles. In this study, we aimed to screen candidate genes that could affect fat-related meat quality traits in meat-type pigeons. We investigated the polymorphic variations at the genomic level using double-digest restriction-associated DNA (ddRAD) sequencing in 12 squabs of SQ and WK pigeons that exhibited significant inter-breed differences in IMF content as well as FA and amino acid compositions in the breast muscles, and screened candidate genes influencing fat-related traits in squabs through gene ontology analysis and pathway analysis. By focusing on 6019 SNPs, which were located in genes with correct annotations and had the potential to induce changes in the encoded proteins, we identified 19 genes (ACAA1, ACAA2, ACACB, ACADS, ACAT1, ACOX3, ACSBG1, ACSBG2, ACSL1, ACSL4, ELOVL6, FADS1, FADS2, HACD4, HADH, HADHA, HADHB, MECR, OXSM) as candidate genes that could affect fat-related traits in squabs. They were significantly enriched in the pathways of FA metabolism, degradation, and biosynthesis (p < 0.05). Results from molecular docking analysis further revealed that three non-synonymous amino acid alterations, ACAA1(S357N), ACAA2(T234I), and ACACB(H1418N), could alter the non-bonding interactions between the enzymatic proteins and their substrates. Since ACAA1, ACAA2, and ACACB encode rate-limiting enzymes in FA synthesis and degradation, alterations in the enzyme-substrate binding affinity may subsequently affect the catalytic efficiency of enzymes. We suggested that SNPs in these three genes were worthy of further investigation into their roles in explaining the disparities in fat-related traits in squabs.
Collapse
Affiliation(s)
- Siyu Yuan
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (S.Y.); (S.T.); (C.M.)
| | - Shaoqi Tian
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (S.Y.); (S.T.); (C.M.)
| | - Chuang Meng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (S.Y.); (S.T.); (C.M.)
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Feng Ji
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100089, China;
| | - Bin Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
| | - Hossam E. Rushdi
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Manhong Ye
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (S.Y.); (S.T.); (C.M.)
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
4
|
Ding Y, Hou Y, Ling Z, Chen Q, Xu T, Liu L, Yu N, Ni W, Ding X, Zhang X, Zheng X, Bao W, Yin Z. Identification of Candidate Genes and Regulatory Competitive Endogenous RNA (ceRNA) Networks Underlying Intramuscular Fat Content in Yorkshire Pigs with Extreme Fat Deposition Phenotypes. Int J Mol Sci 2022; 23:12596. [PMID: 36293455 PMCID: PMC9603960 DOI: 10.3390/ijms232012596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/27/2022] Open
Abstract
Intramuscular fat (IMF) content is vital for pork quality, serving an important role in economic performance in pig industry. Non-coding RNAs, with mRNAs, are involved in IMF deposition; however, their functions and regulatory mechanisms in porcine IMF remain elusive. This study assessed the whole transcriptome expression profiles of the Longissimus dorsi muscle of pigs with high (H) and low (L) IMF content to identify genes implicated in porcine IMF adipogenesis and their regulatory functions. Hundreds of differentially expressed RNAs were found to be involved in fatty acid metabolic processes, lipid metabolism, and fat cell differentiation. Furthermore, combing co-differential expression analyses, we constructed competing endogenous RNAs (ceRNA) regulatory networks, showing crosstalk among 30 lncRNAs and 61 mRNAs through 20 miRNAs, five circRNAs and 11 mRNAs through four miRNAs, and potential IMF deposition-related ceRNA subnetworks. Functional lncRNAs and circRNAs (such as MSTRG.12440.1, ENSSSCT00000066779, novel_circ_011355, novel_circ_011355) were found to act as ceRNAs of important lipid metabolism-related mRNAs (LEP, IP6K1, FFAR4, CEBPA, etc.) by sponging functional miRNAs (such as ssc-miR-196a, ssc-miR-200b, ssc-miR10391, miR486-y). These findings provide potential regulators and molecular regulatory networks that can be utilized for research on IMF traits in pigs, which would aid in marker-assisted selection to improve pork quality.
Collapse
Affiliation(s)
- Yueyun Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Yinhui Hou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Zijing Ling
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Qiong Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Tao Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Lifei Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Na Yu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Wenliang Ni
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoling Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Xiaodong Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Xianrui Zheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
5
|
Zhao L, Zhang D, Li X, Zhang Y, Zhao Y, Xu D, Cheng J, Wang J, Li W, Lin C, Yang X, Ma Z, Cui P, Zhang X, Wang W. Comparative proteomics reveals genetic mechanisms of body weight in Hu sheep and Dorper sheep. J Proteomics 2022; 267:104699. [PMID: 35995385 DOI: 10.1016/j.jprot.2022.104699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
Body weight (BW) is a critical economic trait for meat production in sheep, and it is a complex trait affected by numerous elements. The aim of this study was to investigate the genetic mechanisms of sheep BW by a label-free proteomics approach. The result showed, a total of 27, 14, 61, and 65 differentially abundant proteins (DAPs) were identified in the Hu_HBW vs. Hu_LBW, DP_HBW vs. DP_LBW, Hu_HBW vs. DP_HBW, and Hu_LBW vs. DP_LBW comparisons, respectively. Five proteins (including ILK, AHCYL2, MLIP, CYB5A, and SMTNL1) related to fat synthesis and muscle development were detected in the Hu sheep group. In the Dorper sheep group, the screened DAPs strictly related to muscle development and fat synthesis were significantly enriched in MAP kinase activity (MAPK12), Arachidonic acid metabolism, and Steroid hormone biosynthesis (PGFS, LOC101107119) pathways. Several DAPs related to immune responses (SERPINA1, FGG, SERPINC1, and LOC101108131), fat deposition (APOH, GC, AHSG, SKP1, ACSL1, ACAT1, and ACADS), and muscle development (LMOD3 and LRRC39) were detected in the Hu vs. Dorper sheep comparison. These analyses indicated that the BW of sheep is regulated via a variety of pathways, and these DAPs can be further investigated as candidate markers for predicting the BW of sheep. SIGNIFICANCE: Body weight is one of the key traits in sheep and involves multiple coordinated regulatory mechanisms, but the genetic mechanism of BW is still unclear in sheep. In the current study, the label-free method was used to identify the proteins and pathways related to BW using LT muscle of Hu sheep and Dorper sheep with different BW. These findings will provide new candidate proteins and vital pathways into the molecular mechanisms involved growth traits in sheep.
Collapse
Affiliation(s)
- Liming Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Deyin Zhang
- The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China
| | - Xiaolong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Yukun Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Yuan Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Jiangbo Cheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Jianghui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Wenxin Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Changchun Lin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Xiaobin Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Zongwu Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Panpan Cui
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| | - Weimin Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China; The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China.
| |
Collapse
|
6
|
Li B, Yang J, Gong Y, Xiao Y, Chen W, Zeng Q, Xu K, Duan Y, Ma H. Effects of age on subcutaneous adipose tissue proteins in Chinese indigenous Ningxiang pig by TMT-labeled quantitative proteomics. J Proteomics 2022; 265:104650. [PMID: 35690344 DOI: 10.1016/j.jprot.2022.104650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 10/18/2022]
Abstract
Adipose tissue not only affects meat quality and animal productivity, but also participates in inflammation and immunity. Ningxiang pig is famous for their excellent meat quality, disease resistance and tolerance of roughage. It is not yet well known how proteins in adipose tissue is dynamically regulated during the growth of Ningxiang pig. This report studies the proteomic changes in subcutaneous adipose tissue in Ningxiang pigs to gain a better understanding of the molecular mechanism of fat development during the growth period. By TMT-labeled quantitative proteomic analysis of subcutaneous adipose tissue of 9 purebred Ningxiang pigs of different ages, we identified 2533 unique proteins and 716 differentially abundant proteins (DAPs), of which more than half of the DAPs were concentrated in the 90d-210d period. Retrograde endocannabinoid signaling was only significantly enriched in DAPs of N90d vs N30d, Alcoholism and Graft-versus-host disease were only significantly enriched in DAPs of N210d vs N90d. Proteins related to dilated cardiomyopathy was found to be an important pathway in fat development and lipid metabolism. A variety of novel DAPs involved in maintaining mitochondrial function and cell viability, such as NDUFS6, SDHB, COX5A, ATP5D and TNNT1, which play a role in controlling the prediction networks, may indirectly regulate the development and functional maintenance of adipocytes. SIGNIFICANCE: These age-dependent DAPs discovered in this study may help expand the understanding of the molecular mechanisms of the development, function maintenance and transformation of adipose tissue in Ningxiang pig for developing new strategies for improving meat quality and pig breeding in the future.
Collapse
Affiliation(s)
- Biao Li
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610000, Sichuan, China; Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Jinzeng Yang
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States.
| | - Yan Gong
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Yu Xiao
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Wenwu Chen
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Qinghua Zeng
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Kang Xu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Yehui Duan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China.
| | - Haiming Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410000, China; Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States.
| |
Collapse
|
7
|
Genetic diversity and population structure of six autochthonous pig breeds from Croatia, Serbia, and Slovenia. Genet Sel Evol 2022; 54:30. [PMID: 35484510 PMCID: PMC9052598 DOI: 10.1186/s12711-022-00718-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 04/05/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The importance of local breeds as genetic reservoirs of valuable genetic variation is well established. Pig breeding in Central and South-Eastern Europe has a long tradition that led to the formation of several local pig breeds. In the present study, genetic diversity parameters were analysed in six autochthonous pig breeds from Slovenia, Croatia and Serbia (Banija spotted, Black Slavonian, Turopolje pig, Swallow-bellied Mangalitsa, Moravka and Krskopolje pig). Animals from each of these breeds were genotyped using microsatellites and single nucleotide polymorphisms (SNPs). The results obtained with these two marker systems and those based on pedigree data were compared. In addition, we estimated inbreeding levels based on the distribution of runs of homozygosity (ROH) and identified genomic regions under selection pressure using ROH islands and the integrated haplotype score (iHS). RESULTS The lowest heterozygosity values calculated from microsatellite and SNP data were observed in the Turopolje pig. The observed heterozygosity was higher than the expected heterozygosity in the Black Slavonian, Moravka and Turopolje pig. Both types of markers allowed us to distinguish clusters of individuals belonging to each breed. The analysis of admixture between breeds revealed potential gene flow between the Mangalitsa and Moravka, and between the Mangalitsa and Black Slavonian, but no introgression events were detected in the Banija spotted and Turopolje pig. The distribution of ROH across the genome was not uniform. Analysis of the ROH islands identified genomic regions with an extremely high frequency of shared ROH within the Swallow-bellied Mangalitsa, which harboured genes associated with cholesterol biosynthesis, fatty acid metabolism and daily weight gain. The iHS approach to detect signatures of selection revealed candidate regions containing genes with potential roles in reproduction traits and disease resistance. CONCLUSIONS Based on the estimation of population parameters obtained from three data sets, we showed the existence of relationships among the six pig breeds analysed here. Analysis of the distribution of ROH allowed us to estimate the level of inbreeding and the extent of homozygous regions in these breeds. The iHS analysis revealed genomic regions potentially associated with phenotypic traits and allowed the detection of genomic regions under selection pressure.
Collapse
|
8
|
Zhang Y, Liu X, Zhang L, Wang L, He J, Ma H, Wang L. Preliminary identification and analysis of differential RNA editing between higher and lower backfat thickness pigs using DNA-seq and RNA-seq data. Anim Genet 2022; 53:327-339. [PMID: 35342974 DOI: 10.1111/age.13193] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 12/24/2021] [Accepted: 03/03/2022] [Indexed: 12/31/2022]
Abstract
RNA editing is an essential post-transcriptional regulatory mechanism. However, few studies have investigated the functional RNA edits in the economic traits of livestock on a genome-wide scale. Pigs are one of the most important livestock species and their fat is the principal organ involved in the regulation of adipose deposition. Here, we used three full-sibling pairs, with each pair comprising a pig with higher backfat (BF) thickness and lower backfat thickness, to identify RNA editing events based on whole-genome and transcriptome sequencing data. A total of 60,903 non-redundant RNA editing sites with 59,472 (97.7%) A-to-G edits were detected using a revised bioinformatics pipeline. A specific sequence context with G preference was found one base downstream of the edited site, and the editing level was associated with the distribution of nucleotides across nearly sites. Moreover, the A-to-G editing sites mostly occurred in the pig-special short interspersed nuclear elements, Pre0_SS. Comparing the difference between pigs with higher BF and lower BF, we found 211 differentially edited sites (DESites). Functional enrichment analyses revealed a significant enrichment of genes containing DESites in terms of adipose deposition. The DESites located in the six adipose-related genes (SKP1, GSK3B, COL5A3, MDM4, NT5C2, and DENND2A) were selected as candidate RNA editing sites associated with adipose deposition, and thus require further evaluation. This study mined the potentially functional RNA editing sites in pig adipose tissue and indicated that RNA editing may play an important role in adipose deposition, which provides a new insight into the post-transcriptionally mediated regulation mechanism of fat development.
Collapse
Affiliation(s)
- Yuebo Zhang
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha, China
| | - Xin Liu
- Institute of Animal Science, State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Longchao Zhang
- Institute of Animal Science, State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ligang Wang
- Institute of Animal Science, State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun He
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha, China
| | - Haiming Ma
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha, China
| | - Lixian Wang
- Institute of Animal Science, State Key Laboratory of Animal Nutrition, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|