1
|
Ferreira VHB, Seressia J, Même N, Bernard J, Pinard-van der Laan MH, Calenge F, Lecoeur A, Hedlund L, Jensen P, Guesdon V, Calandreau L. Early and late cognitive and behavioral aspects associated with range use in free-range laying hens (Gallus gallus domesticus). Poult Sci 2024; 103:103813. [PMID: 38759569 PMCID: PMC11107457 DOI: 10.1016/j.psj.2024.103813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/19/2024] Open
Abstract
Individual differences in free-range chicken systems are important factors influencing how birds use the range (or not), even if individuals are reared in the same environmental conditions. Here, we investigated how various aspects of the birds' behavioral and cognitive tendencies, including their optimism/pessimism, cognitive flexibility, sociability, and exploration levels, are associated with range use and how they may change over time (before and after range access). To achieve this, 100 White Leghorn laying hen chicks underwent three distinct behavioral/cognitive tests-the cognitive bias test, the detour test, and the multivariate test-prior to gaining access to the range, between 9 and 39 days of age. After range access was allowed (from day 71), birds' range use was evaluated over 7 nonconsecutive days (from 74-91 days of age). Subsequently, a subset of birds, classified as high rangers (n = 15) and low rangers (n = 15) based on their range use, underwent retesting on the same three previous tests between 94 and 108 days of age. Our results unveiled a negative correlation trend between birds' evaluation of the ambiguous cue and their subsequent range use (rho = -0.19, p = 0.07). Furthermore, low rangers were faster to learn the detour task (χ2 = 7.34, df = 1, p = 0.006), coupled with increased sociability during the multivariate test (rho = -0.23, p = 0.02), contrasting with their high-ranging counterparts, who displayed more exploratory behaviors (F[1,27] = 3.64, p = 0.06). These behavioral patterns fluctuated over time (before and after range access); however, conclusively attributing these changes to birds' aging and development or the access to the range remains challenging. Overall, our results corroborate that behavioral and cognitive individual differences may be linked to range use and offer novel perspectives on the early behavioral and cognitive traits that may be linked to range use. These findings may serve as a foundation for adapting environments to meet individual needs and improve animal welfare in the future.
Collapse
Affiliation(s)
| | - Jeanne Seressia
- CNRS, IFCE, INRAE, UMR PRC, Université de Tours, Nouzilly, France
| | | | | | | | - Fanny Calenge
- INRAE, AgroParisTech, UMR GABI, Université Paris-Saclay, Jouy-en-Josas, France
| | - Alexandre Lecoeur
- INRAE, AgroParisTech, UMR GABI, Université Paris-Saclay, Jouy-en-Josas, France
| | - Louise Hedlund
- IFM Biology, AVIAN Behavioural Genomics and Physiology group, Linköping Universtiy, Linköping, Sweden
| | - Per Jensen
- IFM Biology, AVIAN Behavioural Genomics and Physiology group, Linköping Universtiy, Linköping, Sweden
| | - Vanessa Guesdon
- JUNIA, Comportement Animal et Systèmes d'Elevage, Lille, France
| | | |
Collapse
|
2
|
Göransson L, Abeyesinghe S, Gunnarsson S, Yngvesson J. Easier said than done! Organic farmers consider free-ranging important for laying hen welfare but outdoor areas need more shelter - important gaps between research and practice. Br Poult Sci 2023; 64:544-551. [PMID: 37395056 DOI: 10.1080/00071668.2023.2220650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/16/2023] [Indexed: 07/04/2023]
Abstract
1. The aim of the present study was to investigate the design and management of free-range areas and their use by birds on commercial organic laying hen farms in Sweden and to document farmers' perspectives on outdoor access for poultry.2. Eleven Swedish organic laying hen farms were visited. The farmers were interviewed about general farm management, bird health and behaviour and outdoor access. The free-range areas were assessed in terms of proportion covered by protective (high) vegetation and any artificial shelters provided. The numbers of hens ranging at different distances from the house were recorded twice during the day.3. The outdoor area within 250m from the house contained 0-5% vegetation cover on six of the farms and at least 80% pasture on seven farms. On 10 farms, no more than 13% of the flock was observed outdoors. Of the hens observed in the free-range area, the median proportion ranging within 20m from the house or veranda per observation event was 99% (IQR=55-100%), confirming reports by the farmers.4. Free-range access was considered important by all farmers, primarily for welfare reasons and most agreed that protective vegetation cover and/or artificial shelters were important in encouraging free-ranging. However, there was marked variation among the farmers in their suggestions on how to attract hens outside.
Collapse
Affiliation(s)
- L Göransson
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences (SLU), Skara, Sweden
| | - S Abeyesinghe
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
| | - S Gunnarsson
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences (SLU), Skara, Sweden
| | - J Yngvesson
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences (SLU), Skara, Sweden
| |
Collapse
|
3
|
Alindekon S, Rodenburg TB, Langbein J, Puppe B, Wilmsmeier O, Louton H. Setting the stage to tag "n" track: a guideline for implementing, validating and reporting a radio frequency identification system for monitoring resource visit behavior in poultry. Poult Sci 2023; 102:102799. [PMID: 37315427 PMCID: PMC10404737 DOI: 10.1016/j.psj.2023.102799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023] Open
Abstract
Passive radio frequency identification (RFID) can advance poultry behavior research by enabling automated, individualized, longitudinal, in situ, and noninvasive monitoring; these features can usefully extend traditional approaches to animal behavior monitoring. Furthermore, since the technology can provide insight into the visiting patterns of tagged animals at functional resources (e.g., feeders), it can be used to investigate individuals' welfare, social position, and decision-making. However, the lack of guidelines that would facilitate implementing an RFID system for such investigations, describing it, and establishing its validity undermines this technology's potential for advancing poultry science. This paper aims to fill this gap by 1) providing a nontechnical overview of how RFID functions; 2) providing an overview of the practical applications of RFID technology in poultry sciences; 3) suggesting a roadmap for implementing an RFID system in poultry behavior research; 4) reviewing how validation studies of RFID systems have been done in farm animal behavior research, with a focus on terminologies and procedures for quantifying reliability and validity; and 5) suggesting a way to report on an RFID system deployed for animal behavior monitoring. This guideline is aimed mainly at animal scientists, RFID component manufacturers, and system integrators who wish to deploy RFID system as an automated tool for monitoring poultry behavior for research purposes. For such a particular application, it can complement indications in classic general standards (e.g., ISO/IEC 18000-63) and provide ideas for setting up, testing, and validating an RFID system and a standard for reporting on its adequacy and technical aspects.
Collapse
Affiliation(s)
- Serge Alindekon
- Animal Health and Animal Welfare, Faculty of Agricultural and Environmental Sciences, University of Rostock, 18059 Rostock, Germany
| | - T Bas Rodenburg
- Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Jan Langbein
- Institute of Behavioral Physiology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Birger Puppe
- Institute of Behavioral Physiology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; Behavioral Sciences, Faculty of Agricultural and Environmental Sciences, University of Rostock, 18059 Rostock, Germany
| | | | - Helen Louton
- Animal Health and Animal Welfare, Faculty of Agricultural and Environmental Sciences, University of Rostock, 18059 Rostock, Germany.
| |
Collapse
|
4
|
Taylor PS, Campbell DLM, Jurecky E, Devine N, Lee C, Hemsworth PH. Novelty during rearing increased inquisitive exploration but was not related to early ranging behavior of laying hens. FRONTIERS IN ANIMAL SCIENCE 2023. [DOI: 10.3389/fanim.2023.1128792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Range use by free-range laying hen flocks is heterogeneous. We hypothesized that ranging behaviour may be motivated by curiosity and thwarted by fearfulness. This project aimed to increase a hen’s motivation to explore by enriching the rearing environment and identify relationships between exploration, fear and ranging. Day-old Hy-Line chicks (n = 1700) were reared in environments that provided novel items, structures for perching or an industry standard floor rearing environment. Prior to range access, fear and exploratory behaviors were assessed at 18 weeks of age (cohort 1; n = 30 hens/treatment) via novel arena and novel object tests and at 22 weeks of age (cohort 2; n = 30 hens/treatment) using an 8-arm radial maze choice paradigm adapted from previous rodent research. Hens were trained to expect success in two arms (reward) and failure in two arms (mild punishment), the remaining four arms (ambiguous arms) were not available during training. After training, all hens were retested for 8 minutes with access to the four familiar arms only, then for four minutes with access to the ambiguous arms for the first time, in addition to the success and failure arms. Latency to enter the ambiguous arms and the number of ambiguous arms entered were assessed as an indicator of a hen’s willingness to forgo reward and risk punishment to explore a novel area. At 25 weeks of age, hens were provided with range access and individual range access was monitored for three weeks. Latency to access the range and the number of days the range was accessed was not related to rearing treatment (p > 0.05) and was only weakly correlated with behavior during the novel arena, novel object and 8-arm radial maze tests (r < 0.3). However, hens reared in the novelty rearing environment were more willing to forgo reward to explore the ambiguous arms than hens reared in the control environment (p = 0.004). We did not identify strong evidence that exploration or fearfulness was related to early ranging behavior. However, we show that motivation to explore increases when hens are reared in an enriched environment.
Collapse
|
5
|
A Comparison of the Plumage Condition of Three Egg-Laying Poultry Genotypes Housed in Non-Cage Systems. Animals (Basel) 2023; 13:ani13020185. [PMID: 36670725 PMCID: PMC9854643 DOI: 10.3390/ani13020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/29/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023] Open
Abstract
The study covered a total of 810 hens in 3 groups (housing systems) of 270 hens each. The plumage condition of laying hens raised in various types of alternative housing systems, i.e., in deep litter (B), free-range (FR), and organic systems (O), was assessed at 20, 36, and 56 weeks of age. The indoor stocking density was 6 hens/m2. The study included hens of the native Green-legged Partridge breed (Z-11), Rhode Island Red (R-11) hens covered by a genetic resource protection program, and hybrids of Hy-Line Brown. The plumage of the head, neck, back, tail, and abdomen was assessed on a 5-point scale. The assessment of individual hens' plumage was calculated as the sum of the scores of the head, neck, back, tail and abdomen and could range from 0 (no cover) to 20 points (full plumage). The type of alternative housing system implemented and the age of the laying hens had an effect on the plumage status of all body parts assessed (p < 0.05), while the genotype had an effect on the condition of the neck, back, and tail plumage (p < 0.05). In both the FR and O systems, the plumage status was similar and superior to that in B (p < 0.05). As the age of the birds increased, the condition of the hens' plumage deteriorated. The better state of the plumage in FR and O than in B may indicate improved levels of welfare in housing systems with access to outside runs.
Collapse
|
6
|
Wurtz K, Thodberg K, Berenjian A, Foldager L, Tahamtani F, Riber A. Commercial layer hybrids kept under organic conditions: a comparison of range use, welfare and egg production in two layer strains. Poult Sci 2022; 101:102005. [PMID: 35841633 PMCID: PMC9293655 DOI: 10.1016/j.psj.2022.102005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/04/2022] Open
Abstract
Outdoor range areas provide laying hens with improved opportunities to perform natural behaviors and increase the available space per bird, however, birds are also exposed to potentially stressful factors including weather and predators. Ability to cope with challenging environments varies between different strains and must be considered to ensure good welfare. The aim of this study was to determine how suitable 2 hybrids, the Dekalb White (DW) and the Bovans Brown (BB), are for organic production with special emphasis on ranging behavior. A total of 1,200 hens were housed according to organic regulations across 12 flocks of 100 birds. Range and shelter use, effect of weather, vegetation cover, egg production and quality, and mortality were assessed in addition to a range of clinical welfare indicators. Initially a greater proportion of DW hens accessed the range. However, after approximately 2 mo, a greater proportion of BB were using the range and venturing further from the house. DW hens were more likely to use the shelters than BB hens (P < 0.001). Vegetation was also worn away to a greater extent in the BB ranges. Weather affected the proportion of hens that went outside, the distance ranged from the popholes, and shelter use. BB hens were found to have better plumage condition (P < 0.001), fewer footpad lesions (P < 0.001), fewer comb wounds (P < 0.001), and lower mortality rates (P = 0.013). Both hybrids experienced keel bone fractures, though DW hens had more at the cranial portion (P < 0.001) and BB at the caudal portion (P < 0.001). DW hens had an earlier onset of lay and higher egg production than BB hens (P < 0.001), though BB hens laid heavier eggs (P < 0.001) with thicker shells (P = 0.001). Overall, BB hens seemed to perform superiorly or equivalently to the DW hens for all variables apart from egg production. These results demonstrate the importance of considering the strain of bird selected for organic production systems in order for the birds to reap the potential benefits that are offered by outdoor access.
Collapse
|
7
|
Relationship between Range Use and Fearfulness in Free-Range Hens from Different Rearing Enrichments. Animals (Basel) 2021; 11:ani11020300. [PMID: 33503915 PMCID: PMC7912001 DOI: 10.3390/ani11020300] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 11/17/2022] Open
Abstract
Inconsistency between the environments of indoor pullet rearing and adult outdoor housing may increase the fearfulness in free-range hens. Rearing enrichments and/or range use may reduce adult fearfulness. Hy-Line Brown® chicks (n = 1700) were reared inside across 16 weeks with three enrichment treatments: weekly changing novel objects, custom-designed perching/navigation structures, or no additional enrichments. Pullets were transferred to a free-range system at 16 weeks of age, with range access provided from 25 weeks. At 62 weeks, 135 hens were selected from the three rearing treatments and two ranging groups (indoor: no ranging and outdoor: daily ranging) based on individual radio-frequency identification tracking. Individual behavioural tests of tonic immobility, emergence, open field, and novel object (pen level) were carried out on hens. Spectrograms of vocalisations were analysed for the open field test, as well as computer vision tracking of hen locomotion. The results showed few effects of rearing treatments, with outdoor rangers less fearful than indoor hens. The latency to step in the open field test negatively correlated with hen feather coverage. These results show that individual variation in ranging behaviours is present even following rearing enrichment treatments, and subsequent range use might be an indicator of bird fearfulness.
Collapse
|