1
|
Solarczyk P, Gołębiewski M, Slósarz J, Natalello A, Musati M, Menci R, Sakowski T, Tucki K, Puppel K. Effect of Age at First Calving on the Reproduction Parameters, Metabolic Profile, and Fatty Acid Composition of Polish Holstein Friesian (PHF) and Crossbreds PHF × Swedish Red (SRB) Cattle. Metabolites 2024; 14:583. [PMID: 39590819 PMCID: PMC11596136 DOI: 10.3390/metabo14110583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND The high dairy production of Polish Holstein Friesian (PHF) cows determines high energy requirements in the early stages of lactation. Unfortunately, it is very often difficult to meet this demand through feedstuffs; therefore, homeostasis may be disturbed and metabolic diseases may occur, causing a majority of cows' health problems. Breeders are, therefore, looking for alternatives to the PHF breed using crossbreeding. METHODS This experiment involved 30 PHF cows and 30 PHF × Swedish Red (SRB) crossbred hybrid cows, divided into two age groups, <2 years and >2 years, at first calving. Milk and blood samples were collected at 35 ± 5 days postpartum for analysis. Data on reproductive performance were also analyzed. RESULTS This study revealed lower milk production for the crossbreds hybrid (27.44 kg compared to 32.08 kg), with a higher basic composition content than PHF cows (fat: 3.97% compared to 3.83%, protein: 3.53% compared to 3.27%). The heifers of the crossbreds hybrid reached sexual maturity earlier but did not affect the lower age at first calving. Dividing the cows into age categories provided a more detailed perspective of the impact of genotypic differences on reproductive and metabolic profiles in PHF and PHF × SRB cattle. The findings highlight the importance of considering age-specific effects when assessing the performance and health of dairy cattle with diverse genotypes. CONCLUSIONS The choice between PHF and PHF × SRB should depend on the specific goals and priorities of the cattle farming operation. Factors such as overall milk yield requirements, market demands, reproductive management strategies, and health considerations should be carefully evaluated to determine the most suitable breed for a given farming context.
Collapse
Affiliation(s)
- Paweł Solarczyk
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Marcin Gołębiewski
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Jan Slósarz
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Antonio Natalello
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
| | - Martino Musati
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
| | - Ruggero Menci
- FiBL France, Research Institute of Organic Agriculture, Pôle Bio 150, Avenue de Judée, 26400 Eurre, France
| | - Tomasz Sakowski
- Department of Biotechnology and Nutrigenomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
| | - Karol Tucki
- Department of Production Engineering, Institute of Mechanical Engineering, Warsaw University of Life Sciences, Nowoursynowska 164, 02-787 Warsaw, Poland
| | - Kamila Puppel
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| |
Collapse
|
2
|
Solarczyk P, Slósarz J, Gołębiewski M, Natalello A, Musati M, Luciano G, Priolo A, Puppel K. The Influence of Crossbreeding on the Composition of Protein and Fat Fractions in Milk: A Comparison Between Purebred Polish Holstein Friesian and Polish Holstein Friesian × Swedish Red Cows. Nutrients 2024; 16:3634. [PMID: 39519466 PMCID: PMC11547650 DOI: 10.3390/nu16213634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES In this study, the differences in protein and fat bioactive components between the milk from purebred Polish Holstein Friesian (PHF) cows and PHF cows crossbred with Swedish Red (SRB) were investigated. The objective was to assess the impact of genetic variation on the nutritional quality of their milk. METHODS This study was conducted at the Warsaw University of Life Sciences' (WULS) experimental dairy farm in Warsaw, Poland, and involved 60 primiparous cows divided into two groups: 30 PHF×SRB crossbred cows and 30 purebred PHF cows. All cows were housed in a free-stall system with an average lactation yield exceeding 10,000 kg/lactation. The milk composition analyses included total protein, casein, whey protein, fatty acid profiles, and vitamin content. RESULTS Milk from the PHF×SRB hybrids showed a significantly greater total protein content (3.53%) compared to that from the purebred PHF cows (3.28%). The casein content was higher in the hybrids' milk (2.90%) than the purebreds' milk (2.78%), while the whey protein levels were lower in the purebred milk (0.50%) than in the hybrid milk (0.63%). The hybrids exhibited higher concentrations of certain saturated fatty acids in their milk, while the purebreds' milk contained greater amounts of beneficial unsaturated fatty acids and fat-soluble vitamins-E, D, and K. CONCLUSIONS These results indicate that genetic selection through crossbreeding can enhance the nutritional quality of milk. The differences observed in protein, fatty-acid, and vitamin content underscore the role of the genotype in milk composition, suggesting that breeding strategies can optimize dairy products' health benefits.
Collapse
Affiliation(s)
- Paweł Solarczyk
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Jan Slósarz
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Marcin Gołębiewski
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Antonio Natalello
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Martino Musati
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Giuseppe Luciano
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Alessandro Priolo
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Kamila Puppel
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| |
Collapse
|
3
|
Kostusiak P, Slósarz J, Gołębiewski M, Sakowski T, Puppel K. Relationship between Beef Quality and Bull Breed. Animals (Basel) 2023; 13:2603. [PMID: 37627394 PMCID: PMC10451190 DOI: 10.3390/ani13162603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The beef industry in Poland heavily relies on the Polish Holstein-Friesian (PHF) breed, known for its primary use in dairy production, but which also contributes significantly to the beef supply. In contrast, the Limousine (LM), Hereford (HH), and Charolaise (CH) breeds have gained popularity due to their ideal specialized characteristics for beef production. As PHF continues to dominate the beef market, a thorough comparison of its beef quality and nutritional attributes with the three most popular beef breeds in Poland is essential. This study aims to address this knowledge gap by conducting a rigorous comparison. The experiment was carried out on the beef from 67 bulls kept in a free-stall system with standardized feeding. The highest total antioxidant status (TAS) was found in CH and was 147.5% higher than that in PHF. Also, compared with PHF, a large difference of 70% was observed in LM, while in HH it was only 6.25%. For degree of antioxidant potential (DAP), the highest concentration was found in LM, while CH had a slightly lower score than LM. PHF had the lowest scores for each of the analyzed parameters of protein fraction. For anserine, taurine, creatinine, and creatine content, the highest results were found for LM. For carnosine and coenzyme Q10, the highest values were found for CH. Overall, these results highlight the impact of maturity and breed on carcass composition and quality. Late-maturing breeds, such as LM and CH, tend to exhibit leaner carcasses with superior fatty acid profiles and antioxidant properties. This knowledge is valuable for producers, enabling them to make informed decisions regarding breed selection and production strategies to meet specific market demands for beef with the desired composition and quality.
Collapse
Affiliation(s)
- Piotr Kostusiak
- Institute of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland; (P.K.); (J.S.); (M.G.)
| | - Jan Slósarz
- Institute of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland; (P.K.); (J.S.); (M.G.)
| | - Marcin Gołębiewski
- Institute of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland; (P.K.); (J.S.); (M.G.)
| | - Tomasz Sakowski
- Institute of Genetics and Animal Biotechnology, Polish Academy of Science, Jastrzębiec, Postępu 36A, 05-552 Magdalenka, Poland;
| | - Kamila Puppel
- Institute of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland; (P.K.); (J.S.); (M.G.)
| |
Collapse
|
4
|
Sobczuk-Szul M, Mochol M, Nogalski Z, Pogorzelska-Przybyłek P. Fatty acid profile as affected by fat depot and the sex category of Polish Holstein-Friesian × Limousin fattening cattle fed silage ad libitum. Anim Sci J 2021; 92:e13516. [PMID: 33522059 DOI: 10.1111/asj.13516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 11/28/2022]
Abstract
This study was designed to compare the fatty acid profiles of four types of fat depots from bulls, steers, and heifers. All animals were Polish Holstein-Friesian and Limousin crossbreds fattened semi-intensively-silage at libitum and concentrate in the amount corresponding to 30% of their net energy requirements. The fatty acid profile in intramuscular, intermuscular, and external and internal fat was determined. The intramuscular fat of bulls was most abundant in total PUFAs and n-6 PUFAs, and functional fatty acids C 18:2, C 20:4, and C 22:5 in comparison with steers and heifers. Regardless of sex category, intramuscular and external fat were characterized by higher levels of UFAs and a more desirable MUFA/SFA ratio than the remaining fat types. It should also be noted that external fat was more abundant in CLA than other fat types, and that the highest CLA content was found in bull fat, compared with the remaining sex categories of cattle.
Collapse
Affiliation(s)
- Monika Sobczuk-Szul
- Department of Cattle Breeding and Milk Quality Evaluation, University of Warmia and Mazury in Olsztyn, Olsztyn-Kortowo, Poland
| | - Magdalena Mochol
- Department of Cattle Breeding and Milk Quality Evaluation, University of Warmia and Mazury in Olsztyn, Olsztyn-Kortowo, Poland
| | - Zenon Nogalski
- Department of Cattle Breeding and Milk Quality Evaluation, University of Warmia and Mazury in Olsztyn, Olsztyn-Kortowo, Poland
| | - Paulina Pogorzelska-Przybyłek
- Department of Cattle Breeding and Milk Quality Evaluation, University of Warmia and Mazury in Olsztyn, Olsztyn-Kortowo, Poland
| |
Collapse
|
5
|
Redox Biomarker Baseline Levels in Cattle Tissues and Their Relationships with Meat Quality. Antioxidants (Basel) 2021; 10:antiox10060958. [PMID: 34203695 PMCID: PMC8232099 DOI: 10.3390/antiox10060958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
Cattle breeds or crossbreds with high productivity traits have been developed to meet a growing demand for food. When intensive farming practices are followed, animals face several challenges which can result in poor performance, compromised welfare and the reduced quality of their products. Our study aims to highlight the resting values of the physiological oxidative stress that three cattle breeds exhibit, and their potential relationship with meat quality. For this purpose, we determined the levels of five common redox biomarkers (glutathione (GSH), catalase (CAT), total antioxidant capacity (TAC), thiobarbituric reactive substances (TBARS) and protein carbonyls (CARBS)) in the tissues of three commonly used beef cattle breeds (Charolais (CHA), Limousin (LIM) and Simmental (SIM)) and their association with specific meat quality traits that depend on color, pH and texture. The results revealed that LIM cattle breed animals have elevated intrinsic antioxidant defense systems in comparison to CHA and SIM cattle breed animals. In addition, the meat quality parameters were associated with the redox biomarkers. We propose that the determination of specific antioxidant parameters in the blood might be used as potential biomarkers to predict meat quality. This would allow farmers to nutritionally intervene to improve the quality of their products.
Collapse
|