1
|
Augustine-Wofford K, Connaughton VP, McCarthy E. Are Hyperglycemia-Induced Changes in the Retina Associated with Diabetes-Correlated Changes in the Brain? A Review from Zebrafish and Rodent Type 2 Diabetes Models. BIOLOGY 2024; 13:477. [PMID: 39056672 PMCID: PMC11273949 DOI: 10.3390/biology13070477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
Diabetes is prevalent worldwide, with >90% of the cases identified as Type 2 diabetes. High blood sugar (hyperglycemia) is the hallmark symptom of diabetes, with prolonged and uncontrolled levels contributing to subsequent complications. Animal models have been used to study these complications, which include retinopathy, nephropathy, and peripheral neuropathy. More recent studies have focused on cognitive behaviors due to the increased risk of dementia/cognitive deficits that are reported to occur in older Type 2 diabetic patients. In this review, we collate the data reported from specific animal models (i.e., mouse, rat, zebrafish) that have been examined for changes in both retina/vision (retinopathy) and brain/cognition, including db/db mice, Goto-Kakizaki rats, Zucker Diabetic Fatty rats, high-fat diet-fed rodents and zebrafish, and hyperglycemic zebrafish induced by glucose immersion. These models were selected because rodents are widely recognized as established models for studying diabetic complications, while zebrafish represent a newer model in this field. Our goal is to (1) summarize the published findings relevant to these models, (2) identify similarities in cellular mechanisms underlying the disease progression that occur in both tissues, and (3) address the hypothesis that hyperglycemic-induced changes in retina precede or predict later complications in brain.
Collapse
Affiliation(s)
| | - Victoria P. Connaughton
- Department of Biology, American University, Washington, DC 20016, USA; (K.A.-W.); (E.M.)
- Center for Neuroscience and Behavior, American University, Washington, DC 20016, USA
| | - Elizabeth McCarthy
- Department of Biology, American University, Washington, DC 20016, USA; (K.A.-W.); (E.M.)
- Center for Neuroscience and Behavior, American University, Washington, DC 20016, USA
| |
Collapse
|
2
|
Lin B, Ma J, Fang Y, Lei P, Wang L, Qu L, Wu W, Jin L, Sun D. Advances in Zebrafish for Diabetes Mellitus with Wound Model. Bioengineering (Basel) 2023; 10:bioengineering10030330. [PMID: 36978721 PMCID: PMC10044998 DOI: 10.3390/bioengineering10030330] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
Diabetic foot ulcers cause great suffering and are costly for the healthcare system. Normal wound healing involves hemostasis, inflammation, proliferation, and remodeling. However, the negative factors associated with diabetes, such as bacterial biofilms, persistent inflammation, impaired angiogenesis, inhibited cell proliferation, and pathological scarring, greatly interfere with the smooth progress of the entire healing process. It is this impaired wound healing that leads to diabetic foot ulcers and even amputations. Therefore, drug screening is challenging due to the complexity of damaged healing mechanisms. The establishment of a scientific and reasonable animal experimental model contributes significantly to the in-depth research of diabetic wound pathology, prevention, diagnosis, and treatment. In addition to the low cost and transparency of the embryo (for imaging transgene applications), zebrafish have a discrete wound healing process for the separate study of each stage, resulting in their potential as the ideal model animal for diabetic wound healing in the future. In this review, we examine the reasons behind the delayed healing of diabetic wounds, systematically review various studies using zebrafish as a diabetic wound model by different induction methods, as well as summarize the challenges and improvement strategies which provide references for establishing a more reasonable diabetic wound zebrafish model.
Collapse
Affiliation(s)
- Bangchang Lin
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310000, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Pengyu Lei
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Lei Wang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Linkai Qu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
- Correspondence: (W.W.); (L.J.); (D.S.)
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
- Wenzhou City and WenZhouOuTai Medical Laboratory Co., Ltd. Joint Doctoral Innovation Station, Wenzhou Association for Science and Technology, Wenzhou 325000, China
- Correspondence: (W.W.); (L.J.); (D.S.)
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
- Correspondence: (W.W.); (L.J.); (D.S.)
| |
Collapse
|
3
|
Taj S, Ahmad M, Ashfaq UA. Exploring of novel 4-hydroxy-2H-benzo[e][1,2]thiazine-3-carbohydrazide 1,1-dioxide derivative as a dual inhibitor of α-glucosidase and α-amylase: Molecular docking, biochemical, enzyme kinetic and in-vivo mouse model study. Int J Biol Macromol 2022; 207:507-521. [PMID: 35276296 DOI: 10.1016/j.ijbiomac.2022.03.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 02/10/2022] [Accepted: 03/05/2022] [Indexed: 12/23/2022]
Abstract
Diabetes mellitus (DM) is a metabolic disorder that leads to hyperglycemia due to improper insulin secretion. The study aims to investigate the anti-diabetic potential of benzothiazine derivatives. Molecular docking and Molecular Dynamics simulation study revealed that Compound S6 (4-hydroxy-2H-benzo[e][1,2]thiazine-3-carbohydrazide 1,1-dioxide) and S7 (4-Hydroxy-2-methyl-2H-1,2-benzothiazine-3-carbohydrazide 1,1-dioxide) had less conformational changes during MD simulation analysis at 100 ns. Compound S6 and S7 showed potent activity with IC50 values of 5.93 μM, 6.91 μM and 75.17, 29.10 μM for α-glucosidase and α-amylase respectively and competitive type of inhibition was observed during enzyme kinetic study with a low value of Ki and Ki' for α-glucosidase and α-amylase, respectively. S6 has the lowest Ki (0.0736) and Ki' (-0.0982) for α-glucosidase. Furthermore, in vivo studies were carried out to distinguish the effects of the drug on the body. Histology analysis on mice model showed that compound S6 has a low necrosis rate in the liver, kidney, and pancreas compared to S7. Biochemical results of S6 revealed lower sugar level (112 mg/dL), increase insulin secretion (23, 25 μM/L), and low level of cholesterol (80, 85 mg/dL) and creatinine (1.6, 1.4 mg/dL). The results conclude that compound S6 is a new anti-diabetic agent that minimizes hyperglycemia complications.
Collapse
Affiliation(s)
- Saman Taj
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Matloob Ahmad
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan.
| |
Collapse
|
4
|
Advancing Diabetic Retinopathy Research: Analysis of the Neurovascular Unit in Zebrafish. Cells 2021; 10:cells10061313. [PMID: 34070439 PMCID: PMC8228394 DOI: 10.3390/cells10061313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/30/2022] Open
Abstract
Diabetic retinopathy is one of the most important microvascular complications associated with diabetes mellitus, and a leading cause of vision loss or blindness worldwide. Hyperglycaemic conditions disrupt microvascular integrity at the level of the neurovascular unit. In recent years, zebrafish (Danio rerio) have come into focus as a model organism for various metabolic diseases such as diabetes. In both mammals and vertebrates, the anatomy and the function of the retina and the neurovascular unit have been highly conserved. In this review, we focus on the advances that have been made through studying pathologies associated with retinopathy in zebrafish models of diabetes. We discuss the different cell types that form the neurovascular unit, their role in diabetic retinopathy and how to study them in zebrafish. We then present new insights gained through zebrafish studies. The advantages of using zebrafish for diabetic retinopathy are summarised, including the fact that the zebrafish has, so far, provided the only animal model in which hyperglycaemia-induced retinal angiogenesis can be observed. Based on currently available data, we propose potential investigations that could advance the field further.
Collapse
|