1
|
Zhu G, Liu J, Wu H, Zhu Y, Nimir NEA, Zhou G. The Optimum Mixed Cropping Ratio of Oat and Alfalfa Enhanced Plant Growth, Forage Yield, and Forage Quality in Saline Soil. PLANTS (BASEL, SWITZERLAND) 2024; 13:3103. [PMID: 39520021 PMCID: PMC11548409 DOI: 10.3390/plants13213103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/25/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The forage shortage is more aggravating than ever before, with husbandry development accelerating and meat and dairy product demand increasing. Salinized soils are important reserve land encouraged to be used for forage production in China. However, the salt-tolerant cultivation techniques for forage crops are still inadequate. Therefore, a field experiment was conducted to study the effects of the mixed cropping ratio of oat and alfalfa on plant growth and physiological traits, forage yield, and forage quality in saline soils. Oat (Avena sativa L.) variety of Canadian Monopoly and alfalfa variety of WL525HQ were used, and five mixed cropping ratios (T1 = 100% oat + 0% alfalfa, CK, T2 = 75% oat + 25% alfalfa, T3 = 50% oat + 50% alfalfa, T4 = 25% oat + 75% alfalfa, and T5 = 0% oat + 100% alfalfa) were evaluated. The results showed that plant height, chlorophyll, soluble sugar, starch, antioxidant enzymes, and crude fat were increased firstly and then decreased prominently with decreased oats and increased alfalfa sowing rate; the maximum values showed under T2 but the minimum value under T5 at evaluated growth periods. On the contrary, malondialdehyde and acid detergent fiber were significantly decreased and then increased; the lowest contents were recorded under T2 and highest under T5. Furthermore, the relative growth rate, forage yield, neutral detergent fiber, and crude ash were decreased prominently with decreased oats and increased alfalfa sowing rate, and the highest and lowest values showed under T1 and T5, respectively. Oppositely, the contents of sucrose, proline, N, P, K, relative feeding value, and crude protein were all increased, with the highest contents generated under T2 and the lowest under T1. On the whole, the mixed cropping treatment of T2 showed the best performance in improving both biomass yield and forage quality by enhanced antioxidant enzyme activity, osmotic regulatory substances, and nutrient uptake and utilization. Therefore, this study indicates that 75% oat mixed cropping with 25% alfalfa can be recommended as a salt-tolerant cultivation technique for forage high-yield and high-quality production in moderately saline soil.
Collapse
Affiliation(s)
- Guanglong Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Provincial Key Lab of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China; (J.L.); (H.W.); (Y.Z.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Jiao Liu
- Jiangsu Provincial Key Lab of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China; (J.L.); (H.W.); (Y.Z.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Hao Wu
- Jiangsu Provincial Key Lab of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China; (J.L.); (H.W.); (Y.Z.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Yiming Zhu
- Jiangsu Provincial Key Lab of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China; (J.L.); (H.W.); (Y.Z.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | | | - Guisheng Zhou
- Jiangsu Provincial Key Lab of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China; (J.L.); (H.W.); (Y.Z.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Wu Z, Zhang F, Su Q, Ji Q, Zhu K, Zhang Y, Hou S, Gui L. Integrating 16S rRNA Sequencing and LC-MS-Based Metabolomics to Evaluate the Effects of Dietary Crude Protein on Ruminal Morphology, Fermentation Parameter and Digestive Enzyme Activity in Tibetan Sheep. Animals (Basel) 2024; 14:2149. [PMID: 39123675 PMCID: PMC11310993 DOI: 10.3390/ani14152149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 08/12/2024] Open
Abstract
The dietary crude protein level could affect ruminal fermentation parameters and the microflora of ruminants. The present study's aim was to investigate the effects of different protein level diets on ruminal morphology, fermentation parameters, digestive enzyme activity, microflora and metabolites of Tibetan sheep. Ninety weaned lambs (initial weight of 15.40 ± 0.81 kg, 2 months old) were selected and randomly divided into three groups (six pens/treatment, five rams/pen). Dietary treatments were formulated with 13.03% (high protein, HP), 11.58% (moderate protein, MP) and 10.20% (low protein, LP), respectively. Compared with LP, both papillae length and papillae width were significantly promoted in HP and MP (p < 0.05). The concentrations of ammonia nitrogen, total VFAs, propionic acids and butyric acids in HP were significantly increased compared to those in MP and LP (p < 0.05). The activities of protease and α-amylase in HP were significantly greater than those of LP (p < 0.05). For the ruminal microbial community, higher proportions of phylum Prevotella 1 and Succiniclasticum and genus Rikenellaceae RC9 gut group and Ruminococcus 1 were observed in HP (p < 0.05). A total of 60 differential metabolites (DMs) (28 up, 32 down) between HP and MP; 73 DMs (55 up, 18 down) between HP and LP; and 65 DMs (49 up, 16 down) between MP and LP were identified. Furthermore, four pathways of the biosynthesis of unsaturated fatty acids, tryptophan metabolism, bile secretion and ABC transporters were significantly different (p < 0.05). The abundance of phylum Prevotella 1 was negatively associated with stearic acid and palmitic acid but positively associated with the taurine. The abundance of genus Ruminococcus 1 was negatively associated with stearic acid, oleic acid, erucic acid, Indole-3-acetamide and palmitic acid but positively associated with 6-hydroxymelatonin. In conclusion, a 13.03% CP level improved ruminal morphology, fermentation parameters and digestive enzyme activities through modulating the microbial community and regulating metabolism in Tibetan sheep.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (Z.W.); (F.Z.); (Q.S.); (Q.J.); (K.Z.); (Y.Z.); (S.H.)
| |
Collapse
|
3
|
Yu Q, Xu J, Li M, Xi Y, Sun H, Xie Y, Cheng Q, Li P, Chen C, Yang F, Zheng Y. Synergistic effects of ferulic acid esterase-producing lactic acid bacteria, cellulase and xylanase on the fermentation characteristics, fibre and nitrogen components and microbial community structure of Broussonetia papyrifera during ensiling. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3543-3558. [PMID: 38146051 DOI: 10.1002/jsfa.13239] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND The high fibre content of whole plants of Broussonetia papyrifera limits its efficient utilization. Ferulic acid esterase (FAE), in combination with xylanase, can effectively cleave the lignin-carbohydrate complex, promoting the function of cellulase. However, little is known about the impact of these additives on silage. To effectively utilize natural woody plant resources, FAE-producing Lactiplantibacillus plantarum RO395, xylanase (XY) and cellulase (CE) were used to investigate the dynamic fermentation characteristics, fibre and nitrogen components and microbial community structure during B. papyrifera ensiling. RESULTS Broussonetia papyrifera was either not treated (CK) or treated with FAE-producing lactic acid bacteria (LP), CE, XY, LP + CE, LP + XY or LP + CE + XY for 3, 7, 15, 30 or 60 days, respectively. In comparison with those in the CK treatment, the L. plantarum and enzyme treatments (LP + CE, LP + XY and LP + XY + CE), especially the LP + XY + CE treatment, significantly increased the lactic acid concentration and decreased the pH and the contents of acid detergent insoluble protein and NH3 -N (P < 0.05). Enzyme addition improved the degradation efficiency of lignocellulose, and a synergistic effect was observed after enzyme treatment in combination with LP; in addition, the lowest acid detergent fibre, neutral detergent fibre, hemicellulose and cellulose contents were detected after the LP + CE + XY treatment (P < 0.05). Moreover, CE, XY and LP additions significantly improved the microbial community structure, increased the relative abundance of Lactiplantibacillus and Firmicutes, and effectively inhibited undesirable bacterial (Enterobacter) growth during ensiling. CONCLUSION FAE-producing L. plantarum and the two tested enzymes exhibited synergistic effects on improving the quality of silage, which indicates that this combination can serve as an efficient method for improved B. papyrifera silage utilization. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiang Yu
- College of Animal Science, Guizhou University, Guizhou, China
| | - Jinyi Xu
- College of Animal Science, Guizhou University, Guizhou, China
| | - Mengxin Li
- College of Animal Science, Guizhou University, Guizhou, China
| | - Yulong Xi
- College of Animal Science, Guizhou University, Guizhou, China
| | - Hong Sun
- College of Animal Science, Guizhou University, Guizhou, China
| | - Yixiao Xie
- College of Animal Science, Guizhou University, Guizhou, China
| | - Qiming Cheng
- College of Animal Science, Guizhou University, Guizhou, China
| | - Ping Li
- College of Animal Science, Guizhou University, Guizhou, China
| | - Chao Chen
- College of Animal Science, Guizhou University, Guizhou, China
| | - Fuyu Yang
- College of Animal Science, Guizhou University, Guizhou, China
| | - Yulong Zheng
- College of Animal Science, Guizhou University, Guizhou, China
| |
Collapse
|
4
|
Chen Y, Dong B, Qu H, Cheng J, Feng Y, Liu L, Ma Q. Evaluating the Effects of Replacing Alfalfa with Broussonetia papyrifera Branch/Leaf Powder on Growth and Serum Indicators in Dezhou Donkeys. Animals (Basel) 2023; 14:123. [PMID: 38200854 PMCID: PMC10778167 DOI: 10.3390/ani14010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
The purpose of this experiment was to study the apparent digestibility and the effects of Broussonetia papyrifera (BP) branch/leaf powder supplementation on growth performance and serum indicators in donkeys. The results showed that the apparent digestibility of dry matter (DM), crude protein (CP), crude fiber (CF), neutral detergent fiber (NDF), acidic detergent fiber (ADF), and digestible energy content (DE) of BP branch/leaf powder were 51.88%, 67.27%, 64.86%, 49.59%, 54.73%, 40.87%, and 6.37 MJ/kg, respectively. The average daily gain (ADG) in the 20% group was significantly higher than in the 0% and 30% groups. The serum albumin (ALB) levels in the 0% and 10% groups were significantly higher than those in the 20% and 30% groups, while the serum globulin (GLB) content in the 10% group was significantly lower than in the other groups. The 20% group showed decreased serum triglyceride (TG) levels compared to the other groups. Both the 20% and 30% groups exhibited lower total cholesterol (TC) levels and increased alanine aminotransferase (ALT) compared to the 0% and 10% groups and higher serum lactate dehydrogenase (LDH) levels than the 10% group. The 30% group had higher serum immunoglobulin A (IgA) levels than the other groups, while all three BP branch/leaf powder groups had lower serum tumor necrosis factor (TNF-α) levels than the 0% group. There was a gradual increase in serum total antioxidant capacity (T-AOC) with the increasing amount of BP branch/leaf powder added. In conclusion, the optimal supplemental proportion of BP branch/leaf powder in the diet is 20%. Furthermore, BP branch/leaf powder can improve growth performance, serum immune indices, and antioxidant capacity in Dezhou donkeys.
Collapse
Affiliation(s)
- Yongguang Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, College of Animal Science, Tarim University, Alar 843300, China
| | - Boying Dong
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd., Liaocheng 252200, China
| | - Honglei Qu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd., Liaocheng 252200, China
| | - Jie Cheng
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd., Liaocheng 252200, China
| | - Yulong Feng
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd., Liaocheng 252200, China
| | - Lilin Liu
- Key Laboratory of Tarim Animal Husbandry Science and Technology, College of Animal Science, Tarim University, Alar 843300, China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|