1
|
Cattaneo N, Zarantoniello M, Conti F, Tavano A, Frontini A, Sener I, Cardinaletti G, Olivotto I. Natural-based solutions to mitigate dietary microplastics side effects in fish. CHEMOSPHERE 2024; 367:143587. [PMID: 39433100 DOI: 10.1016/j.chemosphere.2024.143587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 10/03/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Dietary microplastics (MPs) can be consumed by fish, crossing through the gastrointestinal tract. MPs smaller than 20 μm can easily translocate to other organs, such as liver, commonly triggering oxidative stress in fish. Given the current unlikelihood of their short-term elimination, strategies to mitigate MPs-related issues on fish are of considerable interest to the scientific community. In the present study, to reduce both the dietary MPs-induced oxidative stress and the accumulation of MPs, the effectiveness of microencapsulated astaxanthin (ASX) was evaluated in zebrafish (Danio rerio). Specifically, zebrafish were reared from larvae to adults (6 months) and fed diets containing MPs different in range-size (polymer A: 1-5 μm; polymer B: 40-47 μm) at different concentrations (50 or 500 mg/kg). After this period, fish from each experimental group were divided in two sub-groups that were fed, for an additional month, with the previous diets or with the same diets containing implemented with microencapsulated ASX (7 g/kg), respectively. Results showed that microencapsulated ASX was able to counteract the negative effects caused by MPs different in size. Particularly, in zebrafish fed diets containing polymer B microbeads, microencapsulated astaxanthin was able to restore the intestinal epithelium, affected by the abrasive role of MPs during gut transit. Differently, in zebrafish fed diets containing polymer A microbeads, absorbed at intestinal level and translocated mainly to the liver, the microencapsulated ASX decreased the oxidative stress response and reduced the MPs accumulation in target organs due to the antioxidant and the coagulant properties of the ASX and microcapsules wall, respectively. Taken together, the results highlighted that the aquafeeds' implementation with microencapsulated astaxanthin is a prospective tool to prevent MPs-related issues in fish.
Collapse
Affiliation(s)
- N Cattaneo
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - M Zarantoniello
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - F Conti
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - A Tavano
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - A Frontini
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - I Sener
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - G Cardinaletti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2, 33100, Udine, Italy.
| | - I Olivotto
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| |
Collapse
|
2
|
Conti F, Olivotto I, Cattaneo N, Pavanello M, Şener İ, Antonucci M, Chemello G, Gioacchini G, Zarantoniello M. The Promising Role of Synthetic Flavors in Advancing Fish Feeding Strategies: A Focus on Adult Female Zebrafish ( Danio rerio) Growth, Welfare, Appetite, and Reproductive Performances. Animals (Basel) 2024; 14:2588. [PMID: 39272373 PMCID: PMC11394377 DOI: 10.3390/ani14172588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
The present study aimed to test over a six-month period different synthetic flavors in zebrafish (Danio rerio) as an experimental model. Specifically, two attractive and one repulsive synthetic flavors were added (1% w/w) to a specific zebrafish diet, which was administered to the fish during the whole life cycle (from larvae to adults), to evaluate their physiological responses, emphasizing fish welfare, feed intake, growth, reward mechanisms, and reproductive performances. Fish welfare was not affected by all tested flavors, while both attractive flavors promoted fish feed ingestion and growth. The results were supported by both molecular and immunohistochemical analyses on appetite-regulating neurohormonal signals, along with the influence of the feed hedonic properties induced by the brain reward sensation, as demonstrated by the dopamine receptor gene expression. Finally, the present study demonstrated that a higher feed intake also had positive implications on fish reproductive performances, suggesting a promising role of synthetic flavors for the aquaculture industry. In conclusion, the results highlighted the potential of synthetic flavors to improve fish feeding strategies by providing a consistent and effective alternative to traditional stimulants, thereby reducing dependence on natural sources.
Collapse
Affiliation(s)
- Federico Conti
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Ike Olivotto
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Nico Cattaneo
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Massimiliano Pavanello
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - İdris Şener
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Matteo Antonucci
- Independent Researcher, Via Pola 18, 64014 Martinsicuro, Teramo, Italy
| | - Giulia Chemello
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Giorgia Gioacchini
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Matteo Zarantoniello
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| |
Collapse
|
3
|
Lombó M, Giommi C, Zarantoniello M, Chemello G. A Pretty Kettle of Fish: A Review on the Current Challenges in Mediterranean Teleost Reproduction. Animals (Basel) 2024; 14:1597. [PMID: 38891644 PMCID: PMC11171123 DOI: 10.3390/ani14111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The Mediterranean region is facing several environmental changes and pollution issues. Teleosts are particularly sensitive to these challenges due to their intricate reproductive biology and reliance on specific environmental cues for successful reproduction. Wild populations struggle with the triad of climate change, environmental contamination, and overfishing, which can deeply affect reproductive success and population dynamics. In farmed species, abiotic factors affecting reproduction are easier to control, whereas finding alternatives to conventional diets for farmed teleosts is crucial for enhancing broodstock health, reproductive success, and the sustainability of the aquaculture sector. Addressing these challenges involves ongoing research into formulating specialized diets, optimizing feeding strategies, and developing alternative and sustainable feed ingredients. To achieve a deeper comprehension of these challenges, studies employing model species have emerged as pivotal tools. These models offer advantages in understanding reproductive mechanisms due to their well-defined physiology, genetic tractability, and ease of manipulation. Yet, while providing invaluable insights, their applicability to diverse species remains constrained by inherent variations across taxa and oversimplification of complex environmental interactions, thus limiting the extrapolation of the scientific findings. Bridging these gaps necessitates multidisciplinary approaches, emphasizing conservation efforts for wild species and tailored nutritional strategies for aquaculture, thereby fostering sustainable teleost reproduction in the Mediterranean.
Collapse
Affiliation(s)
- Marta Lombó
- Department of Life and Environmental Sciences (DiSVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (M.L.); (C.G.)
- INBB—Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy
- Department of Molecular Biology, Faculty of Biology and Environmental Sciences, Universidad de León, 24071 León, Spain
| | - Christian Giommi
- Department of Life and Environmental Sciences (DiSVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (M.L.); (C.G.)
- INBB—Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy
| | - Matteo Zarantoniello
- Department of Life and Environmental Sciences (DiSVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (M.L.); (C.G.)
| | - Giulia Chemello
- Department of Life and Environmental Sciences (DiSVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (M.L.); (C.G.)
- INBB—Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy
| |
Collapse
|
4
|
Sankappa NM, Lange MD, Yildirim-Aksoy M, Eljack R, Kucuktas H, Beck BH, Abernathy JW. Transcriptome analysis and immune gene expression of channel catfish ( Ictalurus punctatus) fed diets with inclusion of frass from black soldier fly larvae. Front Physiol 2024; 14:1330368. [PMID: 38264328 PMCID: PMC10803510 DOI: 10.3389/fphys.2023.1330368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
The larval waste, exoskeleton shedding, and leftover feed components of the black soldier fly and its larvae make up the by-product known as frass. In this study, we subjected channel catfish (Ictalurus punctatus) to a 10-week feeding trial to assess how different dietary amounts of frass inclusion would affect both systemic and mucosal tissue gene expression, especially in regard to growth and immune-related genes. Fish were divided in quadruplicate aquaria, and five experimental diets comprising 0, 50, 100, 200, and 300 g of frass per kilogram of feed were fed twice daily. At the end of the trial, liver, head kidney, gill, and intestine samples were collected for gene expression analyses. First, liver and intestine samples from fish fed with a no frass inclusion diet (control), low-frass (50 g/kg) inclusion diet, or a high-frass (300 g/kg) inclusion diet were subjected to Illumina RNA sequencing to determine global differential gene expression among diet groups. Differentially expressed genes (DEGs) included the upregulation of growth-related genes such as glucose-6-phosphatase and myostatin, as well as innate immune receptors and effector molecules such as toll-like receptor 5, apolipoprotein A1, C-type lectin, and lysozyme. Based on the initial screenings of low/high frass using RNA sequencing, a more thorough evaluation of immune gene expression of all tissues sampled, and all levels of frass inclusion, was further conducted. Using targeted quantitative PCR panels for both innate and adaptive immune genes from channel catfish, differential expression of genes was identified, which included innate receptors (TLR1, TLR5, TLR9, and TLR20A), proinflammatory cytokines (IL-1β type a, IL-1β type b, IL-17, IFN-γ, and TNFα), chemokines (CFC3 and CFD), and hepcidin in both systemic (liver and head kidney) and mucosal (gill and intestine) tissues. Overall, frass from black soldier fly larvae inclusion in formulated diets was found to alter global gene expression and activate innate and adaptive immunity in channel catfish, which has the potential to support disease resistance in this species in addition to demonstrated growth benefits.
Collapse
Affiliation(s)
- Nithin Muliya Sankappa
- Oak Ridge Institute for Science and Education (ORISE), ARS Research Participation Program, Oak Ridge, TN, United States
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit (AAHRU), Auburn, AL, United States
| | - Miles D. Lange
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit (AAHRU), Auburn, AL, United States
| | - Mediha Yildirim-Aksoy
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit (AAHRU), Auburn, AL, United States
| | - Rashida Eljack
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit (AAHRU), Auburn, AL, United States
| | - Huseyin Kucuktas
- U.S. Fish and Wildlife Service, Southwestern Native Aquatic Resources and Recovery Center, Aquatic Animal Health Unit, Dexter, NM, United States
| | - Benjamin H. Beck
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit (AAHRU), Auburn, AL, United States
| | - Jason W. Abernathy
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit (AAHRU), Auburn, AL, United States
| |
Collapse
|
5
|
Conti F, Zarantoniello M, Antonucci M, Cattaneo N, Rattin M, De Russi G, Secci G, Lucon-Xiccato T, Lira de Medeiros AC, Olivotto I. The Application of Synthetic Flavors in Zebrafish ( Danio rerio) Rearing with Emphasis on Attractive Ones: Effects on Fish Development, Welfare, and Appetite. Animals (Basel) 2023; 13:3368. [PMID: 37958124 PMCID: PMC10647473 DOI: 10.3390/ani13213368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
The aim of the present study was to test synthetic flavors as potential feed attractants in zebrafish (Danio rerio) during early development. Six experimental groups were set up in triplicate: (i) a CTRL group fed a zebrafish commercial diet; (ii) a PG group fed a control diet added with Propylene Glycol (PG); (iii) A1+ and A2+ groups fed a control diet added with 1% of the two attractive flavors (A1+ cheese odor made by mixing Propylene Glycol (PG) with the aromatic chemicals trimethyamine, 2-acetylpyrazine, 2-acetylpyridine, and dimethyl sulfide; and A2+ caramel odor, made of PG mixed with the aromatic chemicals vanillin, maltol, cyclotene, acetoin, butyric acid, and capric acid with traces of both gamma-octalactone and gamma-esalactone) or the repulsive flavor (A- coconut odor, made by mixing PG with the aromatic chemicals gamma-eptalactone, gamma-nonalactone, delta-esalactone, and vanillin with trace of both delta-octalactone and maltol), respectively; (iv) an ROT group fed the two attractive diets, each administered singularly in a weekly rotation scheme. All the tested synthetic flavors did not affect the overall health of larval and juvenile fish and promoted growth. Due to the longer exposure time, results obtained from the juvenile stage provided a clearer picture of the fish responses: zebrafish fed both attractive diets showed higher appetite stimulus, feed ingestion, and growth, while the brain dopaminergic activity suggested the A2+ diet as the most valuable solution for its long-lasting effect over the whole experiment (60-day feeding trial, from larvae to adults). The present study provided important results about the possible use of attractive synthetic flavors for aquafeed production, opening new sustainable and more economically valuable opportunities for the aquaculture sector.
Collapse
Affiliation(s)
- Federico Conti
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (F.C.); (N.C.); (M.R.)
| | - Matteo Zarantoniello
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (F.C.); (N.C.); (M.R.)
| | | | - Nico Cattaneo
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (F.C.); (N.C.); (M.R.)
| | - Mirko Rattin
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (F.C.); (N.C.); (M.R.)
| | - Gaia De Russi
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (G.D.R.); (T.L.-X.)
| | - Giulia Secci
- Department of Agriculture, Food, Environment and Forestry, University of Florence, 50144 Firenze, Italy; (G.S.); (A.C.L.d.M.)
| | - Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (G.D.R.); (T.L.-X.)
| | - Adja Cristina Lira de Medeiros
- Department of Agriculture, Food, Environment and Forestry, University of Florence, 50144 Firenze, Italy; (G.S.); (A.C.L.d.M.)
| | - Ike Olivotto
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (F.C.); (N.C.); (M.R.)
| |
Collapse
|
6
|
Cattaneo N, Zarantoniello M, Conti F, Frontini A, Chemello G, Dimichino B, Marongiu F, Cardinaletti G, Gioacchini G, Olivotto I. Dietary Microplastic Administration during Zebrafish ( Danio rerio) Development: A Comprehensive and Comparative Study between Larval and Juvenile Stages. Animals (Basel) 2023; 13:2256. [PMID: 37508033 PMCID: PMC10376277 DOI: 10.3390/ani13142256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
One of the main sources of MPs contamination in fish farms is aquafeed. The present study investigated, for the first time through a comparative approach, the effects of different-sized fluorescent MPs included in a diet intended for zebrafish (Danio rerio). A comparison based on fish developmental stage (larval vs. juvenile), exposure time, and dietary MPs' size and concentration was performed. Four experimental diets were formulated, starting from the control, by adding fluorescent polymer A (size range 1-5 µm) and B (size range 40-47 µm) at two different concentrations (50 and 500 mg/kg). Zebrafish were sampled at 20 (larval phase) and 60 dpf (juvenile stage). Whole larvae, intestine, liver and muscles of juveniles were collected for the analyses. Polymer A was absorbed at the intestinal level in both larvae and juveniles, while it was evidenced at the hepatic and muscular levels only in juveniles. Hepatic accumulation caused an increase in oxidative stress markers in juveniles, but at the same time significantly reduced the number of MPs able to reach the muscle, representing an efficient barrier against the spread of MPs. Polymer B simply transited through the gut, causing an abrasive effect and an increase in goblet cell abundance in both stages.
Collapse
Affiliation(s)
- Nico Cattaneo
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Matteo Zarantoniello
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Federico Conti
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Andrea Frontini
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Giulia Chemello
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Beniamino Dimichino
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Fabio Marongiu
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Gloriana Cardinaletti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy
| | - Giorgia Gioacchini
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Ike Olivotto
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| |
Collapse
|
7
|
Kari ZA, Téllez-Isaías G, Hamid NKA, Rusli ND, Mat K, Sukri SAM, Kabir MA, Ishak AR, Dom NC, Abdel-Warith AWA, Younis EM, Khoo MI, Abdullah F, Shahjahan M, Rohani MF, Davies SJ, Wei LS. Effect of Fish Meal Substitution with Black Soldier Fly ( Hermetia illucens) on Growth Performance, Feed Stability, Blood Biochemistry, and Liver and Gut Morphology of Siamese Fighting Fish ( Betta splendens). AQUACULTURE NUTRITION 2023; 2023:6676953. [PMID: 39553242 PMCID: PMC11401699 DOI: 10.1155/2023/6676953] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 11/19/2024]
Abstract
Insects such as black soldier fly larvae (BSFL) are gaining interest among researchers and the aquafeed industry due to the fluctuating price and supply of fish meal (FM). This study evaluated the growth performance, feed stability, blood biochemistry, and liver and gut morphology of Betta splendens using BSFL as an alternative to FM. Five formulated diets were prepared: 0% BSFL, 6.5% BSFL, 13% BSFL, 19.5% BSFL, and 24.5% BSFL. The expansion rate, pellet durability index, floatability, bulk density, and water stability of the prepared feed have been assessed. Except for the diameter of the feed, all the parameters studied differed significantly (p < 0.05) across the experimental diets. After 60 days, the fish fed with 13% BSFL had the highest final length, final weight, net weight gain, specific growth rate, weight gain, and gastrointestinal weight, with mean and standard deviation values of 3.97 ± 0.43 cm, 3.95 ± 0.1 g, 2.78 ± 0.1 g, 4.63 ± 0.17, 4.65 ± 0.13, 237.26 ± 7.9%, and 0.04 ± 0.01 mg, respectively. Similar blood haematology and biochemical properties, including corpuscular volume, lymphocytes, white blood cells, red blood cells, haematocrit, albumin, and alkaline phosphatase, were the highest (p < 0.05) in the 13% BSFL diet group compared to the other treatment groups. In addition, BSFL had a significant impact (p < 0.05) on villus length, width, and crypt depth for the anterior and posterior guts of B. splendens. The 13% BSFL diet group had an intact epithelial barrier in the goblet cell arrangement and a well-organized villus structure and tunica muscularis, compared to the other treatment groups. Furthermore, the liver cell was altered with different BSFL inclusions; the 13% FM group demonstrated better nuclei and cytoplasm structure than the other treatment groups. In conclusion, replacing 13% FM with BSFL could improve the growth performance, blood parameters, and liver and intestine morphology of B. splendens, thus providing a promising alternative diet for ornamental freshwater fish.
Collapse
Affiliation(s)
- Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, Malaysia
| | | | | | - Nor Dini Rusli
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, Malaysia
| | - Khairiyah Mat
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, Malaysia
| | - Suniza Anis Mohamad Sukri
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, Malaysia
| | - Muhammad Anamul Kabir
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, Malaysia
- Department of Aquaculture, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Ahmad Razali Ishak
- Centre for Environmental Health & Safety Studies, Faculty of Health Sciences, Universiti Teknologi Mara, Puncak Alam Campus, Malaysia
| | - Nazri Che Dom
- Centre for Environmental Health & Safety Studies, Faculty of Health Sciences, Universiti Teknologi Mara, Puncak Alam Campus, Malaysia
| | | | - Elsayed M. Younis
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Martina Irwan Khoo
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, 16150 Kota Bharu, Kelantan, Malaysia
| | - Faizuan Abdullah
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia
| | - Md Shahjahan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Fazle Rohani
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Simon J. Davies
- Aquaculture and Nutrition Research Unit (ANRU), Carna Research Station, School of Natural Sciences and Ryan Institute, University of Galway, Carna, Co. Galway, Ireland H91 V8Y1
| | - Lee Seong Wei
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, Malaysia
| |
Collapse
|
8
|
Zarantoniello M, de Oliveira AA, Sahin T, Freddi L, Torregiani M, Tucciarone I, Chemello G, Cardinaletti G, Gatto E, Parisi G, Bertolucci C, Riolo P, Nartea A, Gioacchini G, Olivotto I. Enhancing Rearing of European Seabass ( Dicentrarchus labrax) in Aquaponic Systems: Investigating the Effects of Enriched Black Soldier Fly ( Hermetia illucens) Prepupae Meal on Fish Welfare and Quality Traits. Animals (Basel) 2023; 13:1921. [PMID: 37370431 DOI: 10.3390/ani13121921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Within the modern aquaculture goals, the present study aimed to couple sustainable aquafeed formulation and culturing systems. Two experimental diets characterized by 3 and 20% of fish meal replacement with full-fat spirulina-enriched black soldier fly (Hermetia illucens) prepupae meal (HPM3 and HPM20, respectively) were tested on European seabass (Dicentrarchus labrax) juveniles during a 90-day feeding trial performed in aquaponic systems. The experimental diets ensured 100% survival and proper zootechnical performance. No behavioral alterations were evidenced in fish. Histological and molecular analyses did not reveal structural alterations and signs of inflammation at the intestinal level, highlighting the beneficial role on gut health of bioactive molecules typical of HPM or derived from the enriching procedure of insects' growth substrate with spirulina. Considering the quality traits, the tested experimental diets did not negatively alter the fillet's fatty acid profile and did not compromise the fillet's physical features. In addition, the results highlighted a possible role of spirulina-enriched HPM in preserving the fillet from lipid oxidation. Taken together, these results corroborate the use of sustainable ingredients (spirulina-enriched HPM) in aquaponic systems for euryhaline fish rearing.
Collapse
Affiliation(s)
- Matteo Zarantoniello
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Adriana Alves de Oliveira
- CIMAR/CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matoshinos, Portugal
| | - Tolga Sahin
- Department of Aquaculture, Marine Sciences and Technology Faculty, Çanakkale Onsekiz Mart University, 17000 Çanakkale, Turkey
| | - Lorenzo Freddi
- Mj Energy srl Società Agricola, Contrada SS. Crocifisso, 22, 62010 Treia, Italy
| | - Matteo Torregiani
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Isabella Tucciarone
- Department of Agriculture, Food, Environment and Forestry, University of Florence, 50144 Firenze, Italy
| | - Giulia Chemello
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Gloriana Cardinaletti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy
| | - Elia Gatto
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44100 Ferrara, Italy
- Department of Life Sciences and Biotechnology, University of Ferrara, 44100 Ferrara, Italy
| | - Giuliana Parisi
- Department of Agriculture, Food, Environment and Forestry, University of Florence, 50144 Firenze, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, 44100 Ferrara, Italy
| | - Paola Riolo
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Ancuta Nartea
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Giorgia Gioacchini
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Ike Olivotto
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| |
Collapse
|
9
|
Zarantoniello M, Chemello G, Ratti S, Pulido-Rodríguez LF, Daniso E, Freddi L, Salinetti P, Nartea A, Bruni L, Parisi G, Riolo P, Olivotto I. Growth and Welfare Status of Giant Freshwater Prawn ( Macrobrachium rosenbergii) Post-Larvae Reared in Aquaponic Systems and Fed Diets including Enriched Black Soldier Fly ( Hermetia illucens) Prepupae Meal. Animals (Basel) 2023; 13:ani13040715. [PMID: 36830501 PMCID: PMC9952608 DOI: 10.3390/ani13040715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Due to the limited application of insect meal in giant freshwater prawn (Macrobrachium rosenbergii) culture, the present study aimed to (i) produce spirulina-enriched full-fat black soldier fly (Hermetia illucens) prepupae meal (HM) and (ii) test, for the first time, two experimental diets characterized by 3% or 20% of fish meal and fish oil replacement with full-fat HM (HM3 and HM20, respectively) on M. rosenbergii post-larvae during a 60-day feeding trial conducted in aquaponic systems. The experimental diets did not negatively affect survival rates or growth. The use of spirulina-enriched HM resulted in a progressive increase in α-tocopherol and carotenoids in HM3 and HM20 diets that possibly played a crucial role in preserving prawn muscle-quality traits. The massive presence of lipid droplets in R cells in all the experimental groups reflected a proper nutrient provision and evidenced the necessity to store energy for molting. The increased number of B cells in the HM3 and HM20 groups could be related to the different compositions of the lipid fraction among the experimental diets instead of a nutrient absorption impairment caused by chitin. Finally, the expression of the immune response and stress markers confirmed that the experimental diets did not affect the welfare status of M. rosenbergii post-larvae.
Collapse
Affiliation(s)
- Matteo Zarantoniello
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
- Correspondence:
| | - Giulia Chemello
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Stefano Ratti
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | | | - Enrico Daniso
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy
| | - Lorenzo Freddi
- Mj Energy srl Società Agricola, Contrada SS. Crocifisso, 22, 62010 Treia, Italy
| | - Pietro Salinetti
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| | - Ancuta Nartea
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Leonardo Bruni
- Department of Agriculture, Food, Environment and Forestry, University of Florence, 50144 Firenze, Italy
| | - Giuliana Parisi
- Department of Agriculture, Food, Environment and Forestry, University of Florence, 50144 Firenze, Italy
| | - Paola Riolo
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Ike Olivotto
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy
| |
Collapse
|
10
|
Richardson EL, Marshall DJ. Fundamental Niche Narrows through Larval Stages of a Filter-Feeding Marine Invertebrate. THE BIOLOGICAL BULLETIN 2023; 244:25-34. [PMID: 37167621 DOI: 10.1086/725151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
AbstractOntogenetic niche theory predicts that resource use should change across complex life histories. To date, studies of ontogenetic shifts in food niches have mainly focused on a few systems (e.g., fish), with less attention on organisms with filter-feeding larval stages (e.g., marine invertebrates). Recent studies suggest that filter-feeding organisms can select specific particles, but our understanding of whether niche theory applies to this group is limited. We characterized the fundamental niche (i.e., feeding proficiency) by examining how niche breadth changes across the larval stages of the filter-feeding marine polychaete Galeolaria caespitosa. Using a no-choice experimental design, we measured feeding rates of trochophore, intermediate-stage, and metatrochophore larvae on the prey phytoplankton species Nannochloropsis oculata, Tisochrysis lutea, Dunaliella tertiolecta, and Rhodomonas salina, which vary 10-fold in size, from the smallest to the largest. We formally estimated Levins's niche breadth index to determine the relative proportions of each species in the diet of the three larval stages and also tested how feeding rates vary with algal species and stage. We found that early stages eat all four algal species in roughly equal proportions, but niche breadth narrows during ontogeny, such that metatrochophores are feeding specialists relative to early stages. We also found that feeding rates differed across phytoplankton species: the medium-sized cells (Tisochrysis and Dunaliella) were eaten most, and the smallest species (Nannochloropsis) was eaten the least. Our results demonstrate that ontogenetic niche theory describes changes in fundamental niche in filter feeders. An important next step is to test whether the realized niche (i.e., preference) changes during the larval phase as well.
Collapse
|
11
|
Ratti S, Zarantoniello M, Chemello G, Giammarino M, Palermo FA, Cocci P, Mosconi G, Tignani MV, Pascon G, Cardinaletti G, Pacetti D, Nartea A, Parisi G, Riolo P, Belloni A, Olivotto I. Spirulina-enriched Substrate to Rear Black Soldier Fly ( Hermetia illucens) Prepupae as Alternative Aquafeed Ingredient for Rainbow Trout ( Oncorhynchus mykiss) Diets: Possible Effects on Zootechnical Performances, Gut and Liver Health Status, and Fillet Quality. Animals (Basel) 2023; 13:ani13010173. [PMID: 36611781 PMCID: PMC9818012 DOI: 10.3390/ani13010173] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
In the present study, an organic substrate (coffee silverskin) enriched with spirulina (Arthrospira platensis; 15% w/w), as a source of lipids and bioactive molecules, was used to rear the black soldier fly (Hermetia illucens) prepupae. Three grossly isonitrogenous, isoproteic, isolipidic and isoenergetic experimental diets for rainbow trout (Oncorhynchus mykiss) juveniles were then produced: a control diet (HM0) mostly including fish meal and fish oil, and two other test diets named HM3 and HM20, in which 3 or 20% of the marine ingredients were substituted with full fat black soldier fly prepupae meal (HM), respectively. Experimental diets were provided for 6 weeks, and at the end of the trial the physiological responses and marketable traits of the fish were investigated using a multidisciplinary approach. Generally, all test diets were well accepted, and fish growth, gut and liver health status, and marketable characteristics were not impaired by the experimental diets. However, an increased immuno-related gene expression along with a slight reduction of fillet redness and yellowness was evident in fish from the HM20 group.
Collapse
Affiliation(s)
- Stefano Ratti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Matteo Zarantoniello
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Giulia Chemello
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Miriam Giammarino
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | | | - Paolo Cocci
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Gilberto Mosconi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Maria Vittoria Tignani
- Department of Agriculture, Food, Environment and Forestry, University of Florence, 50144 Firenze, Italy
| | - Giulia Pascon
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, 33100 Udine, Italy
| | - Gloriana Cardinaletti
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, 33100 Udine, Italy
| | - Deborah Pacetti
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Ancuta Nartea
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Giuliana Parisi
- Department of Agriculture, Food, Environment and Forestry, University of Florence, 50144 Firenze, Italy
| | - Paola Riolo
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Alessia Belloni
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Ike Olivotto
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
- Correspondence: ; Tel.: +39-071-220-4643
| |
Collapse
|
12
|
Leigh SC, Catabay C, German DP. Sustained changes in digestive physiology and microbiome across sequential generations of zebrafish fed different diets. Comp Biochem Physiol A Mol Integr Physiol 2022; 273:111285. [PMID: 35961610 DOI: 10.1016/j.cbpa.2022.111285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 11/29/2022]
Abstract
Alterations to ratios of protein and fiber in an organism's diet have been shown to structurally and functionally alter its individual digestive physiology. However, it is unclear how these dietary changes may affect phenotypic changes across generations. We utilized feeding trials, morphological analyses, enzyme activities, and 16S rRNA sequencing of the gut microbiome of zebrafish (Danio rerio) to determine how variations to fiber and protein concentrations, kept consistent across sequential generations, affect phenotypic changes. Our results show that Parental (P) and first generation (F1) fish did not differ from each other in terms of their intestine length, intestine mass, enzyme activity levels, and microbial community composition for any of the three experimental diets (high-protein/low-fiber, moderate-protein/fiber, and low-protein/high-fiber). However, each of the three experimental diets for the P and F1 fish, as well as the ancestral diet fish, did have distinct microbial community structure from one another. This indicates that there is a strong dietary effect on digestive physiology and gut microbial community and that these effects are consistent when the diet is kept homogenous across generations.
Collapse
Affiliation(s)
- Samantha C Leigh
- Department of Biology, California State University Dominguez Hills, Carson, CA 90747, USA.
| | - Caitlyn Catabay
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | - Donovan P German
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA. https://twitter.com/dgermanuci
| |
Collapse
|
13
|
Planas M, Olivotto I. Sustainable Aquaculture: Nutrition Studies in Early Developing Finfish, Ornamentals and Experimental Model Fish. Animals (Basel) 2022; 12:ani12111384. [PMID: 35681848 PMCID: PMC9179907 DOI: 10.3390/ani12111384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023] Open
Abstract
Enhancing the knowledge of feeding/nutritional requirements is key in the growth of fish development and for the optimization of rearing techniques [...]
Collapse
Affiliation(s)
- Miquel Planas
- Department of Marine Ecology and Resources, Institute of Marine Research (CSIC), 36208 Vigo, Spain
- Correspondence:
| | - Ike Olivotto
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy;
| |
Collapse
|
14
|
New Eco-Sustainable Feed in Aquaculture: Influence of Insect-Based Diets on the Content of Potentially Toxic Elements in the Experimental Model Zebrafish ( Danio rerio). MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030818. [PMID: 35164082 PMCID: PMC8839634 DOI: 10.3390/molecules27030818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022]
Abstract
According to the concept of circular economy, insects represent good candidates as aquafeed ingredients. Nevertheless, there are some potential chemical risks linked with insect consumption. In this study, we reared the teleost Danio rerio, used as an experimental model, with five experimental diets characterized by increasing levels (0%, 25%, 50%, 75%, and 100%) of full-fat Hermetia illucens (Hi) prepupae, substituting for fish meal (FM) and fish oil (FO). We investigated the presence of potentially toxic elements (PTEs) Cd, Pb, Ni, As, and Hg in larval (20 days), juvenile (2 months), and adult (6 months) fish. Quantitative determinations of Cd, Pb, Ni, and As were made with an atomic absorption spectrometer; the total mercury content was determined by a direct mercury analyzer. The substitution of FM and FO with Hermetia illucens meal led to a reduction in the content of some PTEs, such as Pb, As, and Ni, in fishfeed, leading to concentrations below the legal limit of undesirable substances in animal feed. By increasing the Hi meal dietary content, we observed in the Danio rerio specimens an increase in Cd, Pb, and Ni content and a reduction in As content for all life stages. Moreover, a general increase in the content of Cd, Pb, Hg, and Ni from larvae to juvenile was measured, while the shift of Danio rerio from the juvenile to the adult stage involved a significant increase in the content of Pb, Hg, and Ni. Larvae had a reduced ability to bioaccumulate metal(loid)s compared to juveniles and adults. In conclusion, the content of PTEs in Danio rerio is influenced both by the type of diet administered and by the life stage of the animal itself. This research demonstrates the possibility of using Hi prepupae as an aquafeed ingredient without exposing fish to a chemical risk and, in perspective, allows applying these eco-sustainable diets for the breeding of edible fish species, without endangering human health.
Collapse
|