1
|
Lehr K, Oosterlinck B, Then CK, Gemmell MR, Gedgaudas R, Bornschein J, Kupcinskas J, Smet A, Hold G, Link A. Comparison of different microbiome analysis pipelines to validate their reproducibility of gastric mucosal microbiome composition. mSystems 2025:e0135824. [PMID: 39873520 DOI: 10.1128/msystems.01358-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/16/2024] [Indexed: 01/30/2025] Open
Abstract
Microbiome analysis has become a crucial tool for basic and translational research due to its potential for translation into clinical practice. However, there is ongoing controversy regarding the comparability of different bioinformatic analysis platforms and a lack of recognized standards, which might have an impact on the translational potential of results. This study investigates how the performance of different microbiome analysis platforms impacts the final results of mucosal microbiome signatures. Across five independent research groups, we compared three distinct and frequently used microbiome analysis bioinformatic packages (DADA2, MOTHUR, and QIIME2) on the same subset of fastQ files. The source data set encompassed 16S rRNA gene raw sequencing data (V1-V2) from gastric biopsy samples of clinically well-defined gastric cancer (GC) patients (n = 40; with and without Helicobacter pylori [H. pylori] infection) and controls (n = 39, with and without H. pylori infection). Independent of the applied protocol, H. pylori status, microbial diversity and relative bacterial abundance were reproducible across all platforms, although differences in performance were detected. Furthermore, alignment of the filtered sequences to the old and new taxonomic databases (i.e., Ribosomal Database Project, Greengenes, and SILVA) had only a limited impact on the taxonomic assignment and thus on global analytical outcomes. Taken together, our results clearly demonstrate that different microbiome analysis approaches from independent expert groups generate comparable results when applied to the same data set. This is crucial for interpreting respective studies and underscores the broader applicability of microbiome analysis in clinical research, provided that robust pipelines are utilized and thoroughly documented to ensure reproducibility.IMPORTANCEMicrobiome analysis is one of the most important tools for basic and translational research due to its potential for translation into clinical practice. However, there is an ongoing controversy about the comparability of different bioinformatic analysis platforms and a lack of recognized standards. In this study, we investigate how the performance of different microbiome analysis platforms affects the final results of mucosal microbiome signatures. Five independent research groups used three different and commonly used bioinformatics packages for microbiome analysis on the same data set and compared the results. This data set included microbiome sequencing data from gastric biopsy samples of GC patients. Regardless of the protocol used, Helicobacter pylori status, microbial diversity, and relative bacterial abundance were reproducible across all platforms. The results show that different microbiome analysis approaches provide comparable results. This is crucial for the interpretation of corresponding studies and underlines the broader applicability of microbiome analysis.
Collapse
Affiliation(s)
- Konrad Lehr
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Baptiste Oosterlinck
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Chee Kin Then
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
- Department of Radiation Oncology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Matthew R Gemmell
- Centre for Genomic Research, University of Liverpool, Liverpool, United Kingdom
| | - Rolandas Gedgaudas
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Jan Bornschein
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Juozas Kupcinskas
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Annemieke Smet
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Georgina Hold
- Microbiome Research Centre, University of New South Wales, Sydney, Australia
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
2
|
Long AE, Pitta D, Hennessy M, Indugu N, Vecchiarelli B, Luethy D, Aceto H, Hurcombe S. Assessment of fecal bacterial viability and diversity in fresh and frozen fecal microbiota transplant (FMT) product in horses. BMC Vet Res 2024; 20:306. [PMID: 38987780 PMCID: PMC11234551 DOI: 10.1186/s12917-024-04166-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Currently, lack of standardization for fecal microbiota transplantation (FMT) in equine practice has resulted in highly variable techniques, and there is no data on the bacterial metabolic activity or viability of the administered product. The objectives of this study were to compare the total and potentially metabolically active bacterial populations in equine FMT, and assess the effect of different frozen storage times, buffers, and temperatures on an equine FMT product. Fresh feces collected from three healthy adult horses was subjected to different storage methods. This included different preservation solutions (saline plus glycerol or saline only), temperature (-20 °C or -80 °C), and time (fresh, 30, 60, or 90 days). Samples underwent DNA extraction to assess total bacterial populations (both live and dead combined) and RNA extraction followed by reverse transcription to cDNA as a proxy to assess viable bacteria, then 16s rRNA gene amplicon sequencing using the V1-V2 region. RESULTS The largest difference in population indices and taxonomic composition at the genus level was seen when evaluating the results of DNA-based (total) and cDNA-based (potentially metabolically active) extraction method. At the community level, alpha diversity (observed species, Shannon diversity) was significantly decreased in frozen samples for DNA-based analysis (P < 0.05), with less difference seen for cDNA-based sequencing. Using DNA-based analysis, length of storage had a significant impact (P < 0.05) on the bacterial community profiles. For potentially metabolically active populations, storage overall had less of an effect on the bacterial community composition, with a significant effect of buffer (P < 0.05). Individual horse had the most significant effect within both DNA and cDNA bacterial communities. CONCLUSIONS Frozen storage of equine FMT material can preserve potentially metabolically active bacteria of the equine fecal microbiome, with saline plus glycerol preservation more effective than saline alone. Larger studies are needed to determine if these findings apply to other individual horses. The ability to freeze FMT material for use in equine patients could allow for easier clinical use of fecal transplant in horses with disturbances in their intestinal microbiome.
Collapse
Affiliation(s)
- Alicia E Long
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania, Kennett Square, PA, USA.
| | - Dipti Pitta
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania, Kennett Square, PA, USA
| | - Meagan Hennessy
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania, Kennett Square, PA, USA
| | - Nagaraju Indugu
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania, Kennett Square, PA, USA
| | - Bonnie Vecchiarelli
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania, Kennett Square, PA, USA
| | - Daniela Luethy
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania, Kennett Square, PA, USA
| | - Helen Aceto
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania, Kennett Square, PA, USA
| | - Samuel Hurcombe
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania, Kennett Square, PA, USA
- Veterinary Innovative Partners, New York, NY, USA
| |
Collapse
|
3
|
Ma X, Brinker E, Lea CR, Delmain D, Chamorro ED, Martin DR, Graff EC, Wang X. Evaluation of fecal sample collection methods for feline gut microbiome profiling: fecal loop vs. litter box. Front Microbiol 2024; 15:1337917. [PMID: 38800749 PMCID: PMC11127567 DOI: 10.3389/fmicb.2024.1337917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/12/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Microbial population structures within fecal samples are vital for disease screening, diagnosis, and gut microbiome research. The two primary methods for collecting feline fecal samples are: (1) using a fecal loop, which retrieves a rectal sample using a small, looped instrument, and (2) using the litter box, which collects stool directly from the litter. Each method has its own advantages and disadvantages and is suitable for different research objectives. Methods and results Whole-genome shotgun metagenomic sequencing were performed on the gut microbiomes of fecal samples collected using these two methods from 10 adult cats housed in the same research facility. We evaluated the influence of collection methods on feline microbiome analysis, particularly their impact on DNA extraction, metagenomic sequencing yield, microbial composition, and diversity in subsequent gut microbiome analyses. Interestingly, fecal sample collection using a fecal loop resulted in a lower yield of microbial DNA compared to the litterbox method (p = 0.004). However, there were no significant differences between the two groups in the proportion of host contamination (p = 0.106), virus contamination (p = 0.232), relative taxonomy abundance of top five phyla (Padj > 0.638), or the number of microbial genes covered (p = 0.770). Furthermore, no significant differences were observed in alpha-diversity, beta-diversity, the number of taxa identified at each taxonomic level, and the relative abundance of taxonomic units. Discussion These two sample collection methods do not affect microbial population structures within fecal samples and collecting fecal samples directly from the litterbox within 6 hours after defecation can be considered a reliable approach for microbiome research.
Collapse
Affiliation(s)
- Xiaolei Ma
- School of Life Sciences and Technology, Tongji University, Shanghai, China
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Emily Brinker
- Department of Comparative Pathobiology, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States
| | - Christopher R. Lea
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Diane Delmain
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Erin D. Chamorro
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Douglas R. Martin
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Emily C. Graff
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Xu Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Center for Advanced Science, Innovation, and Commerce, Alabama Agricultural Experiment Station, Auburn, AL, United States
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| |
Collapse
|
4
|
Gustafson KL, McAdams ZL, Russell AL, Dorfmeyer RA, Turner GM, Ericsson AC. Effect size of delayed freezing, diurnal variation, and hindgut location on the mouse fecal microbiome. iScience 2024; 27:109090. [PMID: 38361608 PMCID: PMC10867441 DOI: 10.1016/j.isci.2024.109090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/09/2023] [Accepted: 01/29/2024] [Indexed: 02/17/2024] Open
Abstract
Practical considerations in fecal sample collection for microbiome research include time to sample storage, time of collection, and hindgut position during terminal collections. Here, parallel experiments were performed to investigate the relative effect of these factors on microbiome composition in mice colonized with two different vendor-origin microbiomes. 16S rRNA amplicon sequencing of immediately flash-frozen feces showed no difference in alpha or beta diversity compared to samples incubated up to 9 h at room temperature. Samples collected in the morning showed greater alpha diversity compared to samples collected in the afternoon. While a significant effect of time was detected in all hindgut regions, the effect increased from cecum to distal colon. This study highlights common scenarios in microbiome research that may affect outcome measures of microbial community analysis. However, we demonstrate a relatively low effect size of these technical factors when compared to a primary experimental factor with large intergroup variability.
Collapse
Affiliation(s)
- Kevin L. Gustafson
- University of Missouri (MU) Comparative Medicine Program, Columbia, MO 65201, USA
- Department of Veterinary Pathobiology, MU, Columbia, MO 65201, USA
| | - Zachary L. McAdams
- Molecular Pathogenesis and Therapeutics Program, MU, Columbia, MO 65201, USA
| | - Amber L. Russell
- Department of Veterinary Pathobiology, MU, Columbia, MO 65201, USA
| | - Rebecca A. Dorfmeyer
- MU Metagenomics Center (MUMC), Mutant Mouse Resource and Research Center at the University of Missouri (MU MMRRC), Columbia, MO 65201, USA
| | - Giedre M. Turner
- MU Metagenomics Center (MUMC), Mutant Mouse Resource and Research Center at the University of Missouri (MU MMRRC), Columbia, MO 65201, USA
| | - Aaron C. Ericsson
- University of Missouri (MU) Comparative Medicine Program, Columbia, MO 65201, USA
- Department of Veterinary Pathobiology, MU, Columbia, MO 65201, USA
- Molecular Pathogenesis and Therapeutics Program, MU, Columbia, MO 65201, USA
- MU Metagenomics Center (MUMC), Mutant Mouse Resource and Research Center at the University of Missouri (MU MMRRC), Columbia, MO 65201, USA
| |
Collapse
|
5
|
Boucher L, Leduc L, Leclère M, Costa MC. Current Understanding of Equine Gut Dysbiosis and Microbiota Manipulation Techniques: Comparison with Current Knowledge in Other Species. Animals (Basel) 2024; 14:758. [PMID: 38473143 DOI: 10.3390/ani14050758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Understanding the importance of intestinal microbiota in horses and the factors influencing its composition have been the focus of many studies over the past few years. Factors such as age, diet, antibiotic administration, and geographic location can affect the gut microbiota. The intra- and inter-individual variability of fecal microbiota in horses complicates its interpretation and has hindered the establishment of a clear definition for dysbiosis. Although a definitive causal relationship between gut dysbiosis in horses and diseases has not been clearly identified, recent research suggests that dysbiosis may play a role in the pathogenesis of various conditions, such as colitis and asthma. Prebiotics, probiotics, and fecal microbiota transplantation to modulate the horse's gastrointestinal tract may eventually be considered a valuable tool for preventing or treating diseases, such as antibiotic-induced colitis. This article aims to summarize the current knowledge on the importance of intestinal microbiota in horses and factors influencing its composition, and also to review the published literature on methods for detecting dysbiosis while discussing the efficacy of gut microbiota manipulation in horses.
Collapse
Affiliation(s)
- Laurie Boucher
- Department of Veterinary Biomedical Sciences, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Laurence Leduc
- Department of Clinical Sciences, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Mathilde Leclère
- Department of Clinical Sciences, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Marcio Carvalho Costa
- Department of Veterinary Biomedical Sciences, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
6
|
Chiu O, Gomez DE, Obrego D, Dunfield K, MacNicol JL, Liversidge B, Verbrugghe A. Impact of fecal sample preservation and handling techniques on the canine fecal microbiota profile. PLoS One 2024; 19:e0292731. [PMID: 38285680 PMCID: PMC10824447 DOI: 10.1371/journal.pone.0292731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/27/2023] [Indexed: 01/31/2024] Open
Abstract
Canine fecal microbiota profiling provides insight into host health and disease. Standardization of methods for fecal sample storage for microbiomics is currently inconclusive, however. This study investigated the effects of homogenization, the preservative RNAlater, room temperature exposure duration, and short-term storage in the fridge prior to freezing on the canine fecal microbiota profile. Within 15 minutes after voiding, samples were left non-homogenized or homogenized and aliquoted, then kept at room temperature (20-22°C) for 0.5, 4, 8, or 24 hours. Homogenized aliquots then had RNAlater added or not. Following room temperature exposure, all aliquots were stored in the fridge (4°C) for 24 hours prior to storing in the freezer (-20°C), or stored directly in the freezer. DNA extraction, PCR amplification, then sequencing were completed on all samples. Alpha diversity (diversity, evenness, and richness), and beta diversity (community membership and structure), and relative abundances of bacterial genera were compared between treatments. Homogenization and RNAlater minimized changes in the microbial communities over time, although minor changes in relative abundances occurred. Non-homogenized samples had more inter-sample variability and greater changes in beta diversity than homogenized samples. Storage of canine fecal samples in the fridge for 24 h prior to storage in the freezer had little effect on the fecal microbiota profile. Our findings suggest that if immediate analysis of fecal samples is not possible, samples should at least be homogenized to preserve the existing microbiota profile.
Collapse
Affiliation(s)
- Olivia Chiu
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Diego E. Gomez
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Dasiel Obrego
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Kari Dunfield
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jennifer L. MacNicol
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Brooklynn Liversidge
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Adronie Verbrugghe
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
7
|
Ward AB, Harris PA, Argo CM, Watson C, Neacsu M, Russell WR, Ribeiro A, Collie-Duguid E, Heidari Z, Morrison PK. Homemade Nucleic Acid Preservation Buffer Proves Effective in Preserving the Equine Faecal Microbiota over Time at Ambient Temperatures. Animals (Basel) 2023; 13:3107. [PMID: 37835713 PMCID: PMC10572018 DOI: 10.3390/ani13193107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
The equine faecal microbiota is often assessed as a proxy of the microbial community in the distal colon, where the microbiome has been linked to states of health and disease in the horse. However, the microbial community structure may change over time if samples are not adequately preserved. This study stored equine faecal samples from n = 10 horses in four preservation treatments at room temperature for up to 150 h and assessed the resulting impact on microbial diversity and the differential abundance of taxa. Treatments included "COLD" (samples packaged with a cool pack), "CLX" (2% chlorhexidine digluconate solution), "NAP" (nucleic acid preservation buffer), and "FTA" (Whatman FTA™ cards). The samples were assessed using 16S rRNA gene sequencing after storage for 0, 24, 72, and 150 h at room temperature under the different treatments. The results showed effective preservation of diversity and community structure with NAP buffer but lower diversity (p = 0.001) and the under-representation of Fibrobacterota in the FTA card samples. The NAP treatment inhibited the overgrowth of bloom taxa that occurred by 72 h at room temperature. The COLD, CLX, and NAP treatments were effective in preserving the faecal microbiota for up to 24 h at room temperature, and the CLX and NAP treatments improved the yield of Patescibacteria and Fibrobacterota in some cases. The cold and CLX treatments were ineffective in preventing community shifts that occurred by 72 h at room temperature. These findings demonstrate the suitability of the COLD, NAP, and CLX treatments for the room temperature storage of equine faeces for up to 24 h and of NAP buffer for up to 150 h prior to processing.
Collapse
Affiliation(s)
- Ashley B. Ward
- School of Veterinary Medicine, Scotland’s Rural College, Aberdeen AB21 9YA, UK
- The Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
- School of Medicine Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Patricia A. Harris
- Equine Studies Group, Waltham Petcare Science Institute, Leicestershire LE14 4RT, UK
| | - Caroline McG. Argo
- School of Veterinary Medicine, Scotland’s Rural College, Aberdeen AB21 9YA, UK
| | - Christine Watson
- Department of Rural Land Use, Scotland’s Rural College, Aberdeen AB21 9YA, UK
| | - Madalina Neacsu
- The Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Wendy R. Russell
- The Rowett Institute, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Antonio Ribeiro
- School of Medicine Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
- Centre for Genome-Enabled Biology and Medicine, University of Aberdeen, King’s College, Aberdeen AB24 3FX, UK
| | - Elaina Collie-Duguid
- School of Medicine Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
- Centre for Genome-Enabled Biology and Medicine, University of Aberdeen, King’s College, Aberdeen AB24 3FX, UK
| | - Zeynab Heidari
- School of Medicine Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
- Centre for Genome-Enabled Biology and Medicine, University of Aberdeen, King’s College, Aberdeen AB24 3FX, UK
| | | |
Collapse
|
8
|
Nishigaki A, Previdelli R, Alexander JL, Balarajah S, Roberts L, Marchesi JR. Identification of a Sub-Clinical Salmonella spp. Infection in a Dairy Cow Using a Commercially Available Stool Storage Kit. Animals (Basel) 2023; 13:2807. [PMID: 37685071 PMCID: PMC10486393 DOI: 10.3390/ani13172807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023] Open
Abstract
Stool sampling is a useful tool for diagnosing gastrointestinal disease in veterinary medicine. The sub-clinical disease burden of Salmonella spp. in cattle can become significant for farmers. However, current methods of faecal sampling in a rural setting for diagnosis are not consistently sufficient for the preservation of Salmonella spp. in faeces. This study evaluated the use of a commercial stool storage kit for bacterial preservation in cow faecal samples compared to unpreserved stools placed into refrigeration at different time-points. A stool sample was collected per-rectum from one apparently healthy Holstein-Freisen cow. The sample was weighed and aliquoted into two sterile Falcon tubes and into two commercial kit tubes. The aliquots were then placed into refrigeration at 4 °C at 0, 24, and 96 h after processing. One commercial kit tube was not aliquoted and remained at ambient temperature. After 2 weeks, DNA was extracted from the samples and analysed using endpoint PCR, revealing a sub-clinical infection with Salmonella spp. The bacterium was best preserved when the stool was stored in the commercial kit at ambient temperature and re-homogenised immediately prior to DNA extraction. The unpreserved stool did not maintain obvious levels of Salmonella spp. after 24 h at ambient temperature. This commercial kit should be considered for use in the diagnosis of salmonellosis in cattle.
Collapse
Affiliation(s)
- Alice Nishigaki
- Royal Veterinary College, 4 Royal College Street, London NW1 0TU, UK;
| | - Renato Previdelli
- Royal Veterinary College, 4 Royal College Street, London NW1 0TU, UK;
| | - James L. Alexander
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, St. Mary’s Hospital, London W2 1NY, UK; (J.L.A.); (S.B.); (L.R.); (J.R.M.)
| | - Sharmili Balarajah
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, St. Mary’s Hospital, London W2 1NY, UK; (J.L.A.); (S.B.); (L.R.); (J.R.M.)
| | - Lauren Roberts
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, St. Mary’s Hospital, London W2 1NY, UK; (J.L.A.); (S.B.); (L.R.); (J.R.M.)
| | - Julian R. Marchesi
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, St. Mary’s Hospital, London W2 1NY, UK; (J.L.A.); (S.B.); (L.R.); (J.R.M.)
| |
Collapse
|
9
|
Tuniyazi M, Wang W, Zhang N. A Systematic Review of Current Applications of Fecal Microbiota Transplantation in Horses. Vet Sci 2023; 10:vetsci10040290. [PMID: 37104445 PMCID: PMC10141098 DOI: 10.3390/vetsci10040290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/07/2023] [Accepted: 04/09/2023] [Indexed: 04/28/2023] Open
Abstract
Fecal microbiota transplantation (FMT) is a technique involving transferring fecal matter from a healthy donor to a recipient, with the goal of reinstating a healthy microbiome in the recipient's gut. FMT has been used in horses to manage various gastrointestinal disorders, such as colitis and diarrhea. To evaluate the current literature on the use of FMT in horses, including its efficacy, safety, and potential applications, the authors conducted an extensive search of several databases, including PubMed, MEDLINE, Web of Science, and Google Scholar, published up to 11 January 2023. The authors identified seven studies that met their inclusion criteria, all of which investigated the FMT application as a treatment for gastrointestinal disorders such as colitis and diarrhea. The authors demonstrated that FMT was generally effective in treating these conditions. However, the authors noted that the quality of the studies was generally suboptimal and characterized by small sample sizes and a lack of control groups. The authors concluded that FMT is a promising treatment option for certain gastrointestinal disorders in horses. Nevertheless, more research is required to determine the optimal donor selection, dosing, and administration protocols, as well as the long-term safety and efficacy of FMT in horses.
Collapse
Affiliation(s)
- Maimaiti Tuniyazi
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wenqing Wang
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
10
|
Di Pietro R, Arroyo LG, Leclere M, Costa M. Effects of concentrated fecal microbiota transplant on the equine fecal microbiota after antibiotic-induced dysbiosis. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2023; 87:85-96. [PMID: 37020579 PMCID: PMC10069150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/08/2022] [Indexed: 04/07/2023]
Abstract
Bacterial imbalances are observed in intestinal diseases and fecal microbiota transplantation (FMT) has been used to restore the intestinal microbiota of horses. However, there is evidence that the current methods proposed for FMT in horses have limited efficacy. The objective of this study was to concentrate the bacteria present in the donor stool by centrifugation, and to test the effect in horses with antibiotic-induced dysbiosis. One healthy 11-year-old horse was selected as a fecal donor and 9 horses were given trimethoprim sulfadiazine (TMS) for 5 days to induce dysbiosis. Horses received either a concentrated FMT (cFMT, n = 3), fresh unconcentrated FMT (fFMT, n = 3), or 10% glycerol solution (vehicle, VEH, n = 3) by nasogastric tube for 3 days. Fecal samples were collected on Days 0, 4, 9, 11, and 21 for microbiota analysis (Illumina sequencing). The TMS significantly changed the bacterial composition of horses' feces (D0 versus D4). The composition of the cFMT and fFMT recipient horses was significantly different after transplantation compared to after antibiotic-induced dysbiosis (D4 versus D11), whereas the microbiota of the vehicle recipients was not, indicating that both protocols induced transient changes. However, preparation of FMT solutions markedly changed the original composition present in the donor's feces, with significant enrichment of Escherichia genus in the cFMT. Individual susceptibility to restoration of the microbiota was observed in horses, similar to what is known for other species. Our results suggest that concentrating bacteria should not be recommended in preparation of FMT solutions and that further research is required to improve current methods recommended to perform FMT in horses.
Collapse
Affiliation(s)
- Rebecca Di Pietro
- Department of Biomedical Sciences (Di Pietro, Costa), Department of Clinical Sciences (Leclere), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2; Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1 (Arroyo)
| | - Luis G Arroyo
- Department of Biomedical Sciences (Di Pietro, Costa), Department of Clinical Sciences (Leclere), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2; Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1 (Arroyo)
| | - Mathilde Leclere
- Department of Biomedical Sciences (Di Pietro, Costa), Department of Clinical Sciences (Leclere), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2; Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1 (Arroyo)
| | - Marcio Costa
- Department of Biomedical Sciences (Di Pietro, Costa), Department of Clinical Sciences (Leclere), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2; Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1 (Arroyo)
| |
Collapse
|
11
|
Loublier C, Taminiau B, Heinen J, Lecoq L, Amory H, Daube G, Cesarini C. Evaluation of Bacterial Composition and Viability of Equine Feces after Processing for Transplantation. Microorganisms 2023; 11:microorganisms11020231. [PMID: 36838196 PMCID: PMC9966902 DOI: 10.3390/microorganisms11020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Fecal microbiota transplantation (FMT) has been used empirically for decades in equine medicine to treat intestinal dysbiosis but evidence-based information is scarce. This in vitro study aimed at assessing the effect of a commonly used pre-FMT processing method on the bacterial composition and viability of the fecal filtrate. Three samples of fresh equine manure (T0) were processed identically: the initial manure was mixed with 1 L of lukewarm water and chopped using an immersion blender to obtain a mixture (T1), which was left uncovered during 30 min (T2) and percolated through a sieve to obtain a fecal filtrate (T3). Samples were taken throughout the procedure (Tn) and immediately stored at 4 °C until processing. The 16S rDNA amplicon profiling associated with propidium monoazide treatment was performed on each sample to select live bacteria. Analyses of α and β diversity and main bacterial populations and quantitative (qPCR) analysis were performed and statistically compared (significance p < 0.05) between time points (T0-T3). No significant differences in ecological indices or mean estimated total living bacteria were found in the final fecal filtrate (T3) in regard to the original manure (T0); however, relative abundances of some minor genera (Fibrobacter, WCHB1-41_ge and Akkermansia) were significantly different in the final filtrate. In conclusion, the results support the viability of the major bacterial populations in equine feces when using the described pre-FMT protocol.
Collapse
Affiliation(s)
- Clémence Loublier
- Equine Clinical Department, Faculty of Veterinary Medicine, University of Liège, Bât. B41, 4000 Liège, Belgium
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Bernard Taminiau
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
- Department of Food Sciences—Microbiology, Faculty of Veterinary Medicine, University of Liege, Avenue de Cureghem 10, Bât. B43b, 4000 Liège, Belgium
| | - Julia Heinen
- Equine Clinical Department, Faculty of Veterinary Medicine, University of Liège, Bât. B41, 4000 Liège, Belgium
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Laureline Lecoq
- Equine Clinical Department, Faculty of Veterinary Medicine, University of Liège, Bât. B41, 4000 Liège, Belgium
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Hélène Amory
- Equine Clinical Department, Faculty of Veterinary Medicine, University of Liège, Bât. B41, 4000 Liège, Belgium
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Georges Daube
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
- Department of Food Sciences—Microbiology, Faculty of Veterinary Medicine, University of Liege, Avenue de Cureghem 10, Bât. B43b, 4000 Liège, Belgium
| | - Carla Cesarini
- Equine Clinical Department, Faculty of Veterinary Medicine, University of Liège, Bât. B41, 4000 Liège, Belgium
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
- Correspondence:
| |
Collapse
|
12
|
Fecal Microbiota Comparison between Healthy Teaching Horses and Client-Owned Horses. J Equine Vet Sci 2022; 118:104105. [PMID: 36058504 DOI: 10.1016/j.jevs.2022.104105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/20/2022]
Abstract
The objective of this study was to compare the fecal microbiota of 2 healthy teaching horse herds with that of client-owned horses from the same geographic areas. The fecal microbiota of client-owned horses from Ontario Canada (n = 15) and Florida, USA (n = 11) was compared with that teaching horses from the University of Guelph, Ontario, Canada (n = 10) and the University of Florida, Florida, USA (n = 15). The fecal microbiota was characterized by sequencing of bacterial DNA using the V4 hypervariable region of the 16S rRNA gene. The diversity (inverse Simpson index) of the fecal microbiota was significantly higher in teaching than client owned horses from the same geographical area (P < 0.05). The community membership (Jaccard Index) and structure (Yue and Clayton index) of teaching horses was also significantly different from that of client owned horses from the same geographical area (AMOVA P < 0.001). The bacterial membership and structure of the fecal microbiota of Ontario and Florida teaching horses were significantly different, while the bacterial membership, but not the structure of Ontario and Florida client owned horses was significantly different (AMOVA P < 0.001). In all 4 groups of healthy horses, Lachnospiraceae, Ruminococcaceae, Bacteroidales, Clostridiales, and Treponema were detected in high relative abundance. The fecal microbiota of healthy horses from teaching herds kept in the same environment with identical management practices differs significantly from that of horses housed in different facilities with dissimilar management practices. Our results suggest an effect of the environment and management practices on the gastrointestinal microbiota. Researchers should attempt to include healthy horses from the same farm with similar management as control groups when comparing with diseased horses.
Collapse
|
13
|
Liepman RS, Swink JM, Habing GG, Boyaka PN, Caddey B, Costa M, Gomez DE, Toribio RE. Effects of Intravenous Antimicrobial Drugs on the Equine Fecal Microbiome. Animals (Basel) 2022; 12:1013. [PMID: 35454258 PMCID: PMC9030835 DOI: 10.3390/ani12081013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 02/05/2023] Open
Abstract
Alterations in the gastrointestinal microbiota after antimicrobial therapy in horses can result in loss of colonization resistance and changes in bacterial metabolic function. It is hypothesized that these changes facilitate gastrointestinal inflammation, pathogen expansion and the development of diarrhea. The objectives of this study were to determine the effect of intravenous administration of antimicrobial drugs (ceftiofur, enrofloxacin, oxytetracycline) on equine fecal bacterial communities over time, to investigate whether those changes are detectable after 5 days of treatment and whether they persist over time (30 days). Sixteen horses were randomly assigned into 4 treatment groups: group 1 (enrofloxacin, n = 4); group 2 (ceftiofur sodium, n = 4); group 3 (oxytetracycline, n = 4); group 4 (0.9% saline solution, placebo, n = 4). Antimicrobial therapy was administered for 5 days. Fecal samples were obtained before (day 0) and at 3, 5 and 30 days of the study period. Bacterial DNA was amplified using specific primers to the hypervariable region V1−V3 of the 16S rRNA gene using a 454 FLX-Titanium pyrosequencer. Antimicrobial therapy failed to cause any changes in physical examination parameters, behavior, appetite or fecal output or consistency throughout the study in any horse. There was a significant effect of treatment on alpha diversity indices (richness) over the treatment interval for ceftiofur on days 0 vs. 3 (p < 0.05), but not for other antimicrobials (p > 0.05). Microbial composition was significantly different (p < 0.05) across treatment group and day, but not for interactions between treatment and day, regardless of taxonomic level and beta-diversity distance metric. The most significant antimicrobial effects on relative abundance were noted after intravenous administration of ceftiofur and enrofloxacin. The relative abundance of Fibrobacteres was markedly lower on day 3 compared to other days in the ceftiofur and enrofloxacin treatment groups. There was an increase in Clostridia and Lachnospiraceae from day 0 to days 3 and 5 in ceftiofur and enrofloxacin treated groups. These findings showed the negative effect of antimicrobial drugs on bacterial communities associated with gut health (Fibrobacteres and Lachnospiraceae) and indicate that changes in specific taxa could predispose horses to gastrointestinal inflammation and the development of diarrhea.
Collapse
Affiliation(s)
- Rachel S. Liepman
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (R.S.L.); (J.M.S.)
| | - Jacob M. Swink
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (R.S.L.); (J.M.S.)
| | - Greg G. Habing
- Department of Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Prosper N. Boyaka
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Benjamin Caddey
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Marcio Costa
- Department of Veterinary Biomedical Sciences, Faculté de Médecine Vétérinaire, University of Montreal, Saint Hyacinthe, QC J2S 2M2, Canada;
| | - Diego E. Gomez
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Ramiro E. Toribio
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (R.S.L.); (J.M.S.)
| |
Collapse
|
14
|
O’Donnell D, Sukovaty L, Webb G. Impact of Storage Conditions on Equine Fecal Inoculum for Estimating In Vitro Digestibility. Animals (Basel) 2021; 11:ani11113195. [PMID: 34827926 PMCID: PMC8614252 DOI: 10.3390/ani11113195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Sample handling and storage may affect the fermentative capacity of fecal inoculum. The need to collect rectal grabs from individuals can be a limiting factor in utilizing fecal inoculum from very young or feral animals. This study evaluated the effect of storage conditions of equine feces on the viability of microbial inoculum used for in vitro equine digestibility trials. Pooled fecal material was stored anaerobically at 39 °C for 15 min (control), while aerobic samples were stored at 22 °C for 6 h (SC1), 3 °C for 6 h (SC2), and −18 °C for 24 h (SC3). Results supported that fecal material stored aerobically for six hours at 22 °C provided similar digestibility estimates compared to the control, while dry matter digestibility decreased by 3.86% at SC2 and by 4.08% at SC3. Abstract This study evaluated the effect of storage conditions of equine fecal material on the viability of microbial inoculum used for in vitro equine digestibility trials. Pooled fecal material from three mature Quarter Horse geldings was stored at 39 °C anaerobically for 15 min (control), while aerobic samples were stored at 22 °C for 6 h (SC1), 3 °C for 6 h (SC2), and −18 °C for 24 h (SC3). Following storage, the feces were utilized to prepare microbial inoculum for the digestion of six different forages using the Daisy II Incubator. After incubation, DM, NDF, and ADF compositions were determined and used to calculate DMD, NDFD, and ADFD. Analysis using the OLS regression model for differences in DMD, NDFD, and ADFD across the storage conditions found significant interactions between the forage sample and the storage condition (p < 0.05). The results between the control and SC1, SC2, and SC3 were not different (p < 0.8). Fecal material stored aerobically for six hours at 22 °C provided similar digestibility estimates compared to the control, while DMD decreased by 3.86% in SC2 and by 4.08% in SC3.
Collapse
|