1
|
Manaig YJY, Criado-Mesas L, Esteve-Codina A, Mármol-Sánchez E, Castelló A, Sánchez A, Folch JM. Identifying miRNA-mRNA regulatory networks on extreme n-6/n-3 polyunsaturated fatty acid ratio expression profiles in porcine skeletal muscle. PLoS One 2023; 18:e0283231. [PMID: 37141193 PMCID: PMC10159129 DOI: 10.1371/journal.pone.0283231] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/06/2023] [Indexed: 05/05/2023] Open
Abstract
Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) are essential fatty acids with antagonistic inflammatory functions that play vital roles in metabolic health and immune response. Current commercial swine diets tend to over-supplement with n-6 PUFAs, which may increase the likelihood of developing inflammatory diseases and affect the overall well-being of the animals. However, it is still poorly understood how n-6/n-3 PUFA ratios affect the porcine transcriptome expression and how messenger RNAs (mRNAs) and microRNAs (miRNAs) might regulate biological processes related to PUFA metabolism. On account of this, we selected a total of 20 Iberian × Duroc crossbred pigs with extreme values for n-6/n-3 FA ratio (10 high vs 10 low), and longissimus dorsi muscle samples were used to identify differentially expressed mRNAs and miRNAs. The observed differentially expressed mRNAs were associated to biological pathways related to muscle growth and immunomodulation, while the differentially expressed microRNAs (ssc-miR-30a-3p, ssc-miR-30e-3p, ssc-miR-15b and ssc-miR-7142-3p) were correlated to adipogenesis and immunity. Relevant miRNA-to-mRNA regulatory networks were also predicted (i.e., mir15b to ARRDC3; mir-7142-3p to METTL21C), and linked to lipolysis, obesity, myogenesis, and protein degradation. The n-6/n-3 PUFA ratio differences in pig skeletal muscle revealed genes, miRNAs and enriched pathways involved in lipid metabolism, cell proliferation and inflammation.
Collapse
Affiliation(s)
- Yron Joseph Yabut Manaig
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Barcelona, Spain
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, Lodi, Italy
| | - Lourdes Criado-Mesas
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Barcelona, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Emilio Mármol-Sánchez
- Department of Molecular Biosciences, Science for Life Laboratory, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Centre for Palaeogenetics, Stockholm, Sweden
| | - Anna Castelló
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Barcelona, Spain
| | - Armand Sánchez
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Barcelona, Spain
| | - Josep M Folch
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Barcelona, Spain
| |
Collapse
|
2
|
Yang Y, Liu HL, Liu YJ. A Novel Five-Gene Signature Related to Clinical Outcome and Immune Microenvironment in Breast Cancer. Front Genet 2022; 13:912125. [PMID: 35646102 PMCID: PMC9136328 DOI: 10.3389/fgene.2022.912125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022] Open
Abstract
Breast cancer (BC) is the most frequent cancer in women and the main cause of cancer-related deaths in the globe, according to the World Health Organization. The need for biomarkers that can help predict survival or guide treatment decisions in BC patients is critical in order to provide each patient with an individualized treatment plan due to the wide range of prognoses and therapeutic responses. A reliable prognostic model is essential for determining the best course of treatment for patients. Patients’ clinical and pathological data, as well as their mRNA expression levels at level 3, were gleaned from the TCGA databases. Differentially expressed genes (DEGs) between BC and non-tumor specimens were identified. Tumor immunity analyses have been utilized in order to decipher molecular pathways and their relationship to the immune system. The expressions of KIF4A in BC cells were determined by RT-PCR. To evaluate the involvement of KIF4A in BC cell proliferation, CCK-8 tests were used. In this study, utilizing FC > 4 and p < 0.05, we identified 140 upregulated genes and 513 down-regulated genes. A five-gene signature comprising SFRP1, SAA1, RBP4, KIF4A and COL11A1 was developed for the prediction of overall survivals of BC. Overall survival was distinctly worse for patients in the high-risk group than those in the low-risk group. Cancerous and aggressiveness-related pathways and decreased B cell, T cell CD4+, T cell CD8+, Neutrophil and Myeloid dendritic cells levels were seen in the high-risk group. In addition, we found that KIF4A was highly expressed in BC and its silence resulted in the suppression of the proliferation of BC cells. Taken together, as a possible prognostic factor for BC, the five-gene profile created and verified in this investigation could guide the immunotherapy selection.
Collapse
|