1
|
Zhang P, Zhang F, Sui H, Yang X, Ji Y, Zheng S, Li W, Cheng K, Wang C, Jiao J, Zhang X, Cao Z, Zhang Y. Characterization of sexual maturity-associated N6-methyladenosine in boar testes. BMC Genomics 2024; 25:447. [PMID: 38714941 PMCID: PMC11075296 DOI: 10.1186/s12864-024-10343-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND The health and size of the testes are crucial for boar fertility. Testicular development is tightly regulated by epigenetics. N6-methyladenosine (m6A) modification is a prevalent internal modification on mRNA and plays an important role in development. The mRNA m6A methylation in boar testicular development still needs to be investigated. RESULTS Using the MeRIP-seq technique, we identify and profile m6A modification in boar testes between piglets and adults. The results showed 7783 distinct m6A peaks in piglets and 6590 distinct m6A peaks in adults, with 2,471 peaks shared between the two groups. Enrichment of GO and KEGG analysis reveal dynamic m6A methylation in various biological processes and signalling pathways. Meanwhile, we conjointly analyzed differentially methylated and expressed genes in boar testes before and after sexual maturity, and reproductive related genes (TLE4, TSSK3, TSSK6, C11ORF94, PATZ1, PHLPP1 and PAQR7) were identified. Functional enrichment analysis showed that differential genes are associated with important biological functions, including regulation of growth and development, regulation of metabolic processes and protein catabolic processes. CONCLUSION The results demonstrate that m6A methylation, differential expression and the related signalling pathways are crucial for boar testicular development. These results suggest a role for m6A modification in boar testicular development and provided a resource for future studies on m6A function in boar testicular development.
Collapse
Affiliation(s)
- Pengfei Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, No.130 West Changjiang Road, Hefei, 230036, China
| | - Fei Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, No.130 West Changjiang Road, Hefei, 230036, China
| | - Heming Sui
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, No.130 West Changjiang Road, Hefei, 230036, China
- National Animal Husbandry Service, Beijing, 100125, China
| | - Xingyu Yang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, No.130 West Changjiang Road, Hefei, 230036, China
| | - Yiming Ji
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, No.130 West Changjiang Road, Hefei, 230036, China
| | - Shenghao Zheng
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, No.130 West Changjiang Road, Hefei, 230036, China
| | - Wei Li
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, No.130 West Changjiang Road, Hefei, 230036, China
| | - Kun Cheng
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, No.130 West Changjiang Road, Hefei, 230036, China
| | - Chonglong Wang
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Jun Jiao
- Anhui Haoyu Animal Husbandry Co., Ltd, Luan, 237451, China
| | - Xiaodong Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, No.130 West Changjiang Road, Hefei, 230036, China.
| | - Zubing Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, No.130 West Changjiang Road, Hefei, 230036, China.
| | - Yunhai Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, No.130 West Changjiang Road, Hefei, 230036, China.
| |
Collapse
|
2
|
Wang P, Liu Z, Zhang X, Huo H, Wang L, Dai H, Yang F, Zhao G, Huo J. Integrated analysis of lncRNA, miRNA and mRNA expression profiles reveals regulatory pathways associated with pig testis function. Genomics 2024; 116:110819. [PMID: 38432498 DOI: 10.1016/j.ygeno.2024.110819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Long noncoding RNA (lncRNA) and microRNA (miRNA) are known to play pivotal roles in mammalian testicular function and spermatogenesis. However, their impact on porcine male reproduction has yet to be well unraveled. Here, we sequenced and identified lncRNA and miRNA expressed in the testes of Chinese indigenous Banna mini-pig inbred line (BMI) and introduced Western Duroc (DU) and Large White (LW) pigs. By pairwise comparison (BMI vs DU, BMI vs LW, and DU vs LW), we found the gene expression differences in the testes between Chinese local pigs and introduced Western commercial breeds were more striking than those between introduced commercial breeds. Furthermore, we found 1622 co-differentially expressed genes (co-DEGs), 122 co-differentially expressed lncRNAs (co-DELs), 39 co-differentially expressed miRNAs (co-DEMs) in BMI vs introduced commercial breeds (DU and LW). Functional analysis revealed that these co-DEGs and co-DELs/co-DEMs target genes were enriched in male sexual function pathways, including MAPK, AMPK, TGF-β/Smad, Hippo, NF-kappa B, and PI3K/Akt signaling pathways. Additionally, we established 10,536 lncRNA-mRNA, 11,248 miRNA-mRNA pairs, and 62 ceRNA (lncRNA-miRNA-mRNA) networks. The ssc-miR-1343 had the most interactive factors in the ceRNA network, including 20 mRNAs and 3 lncRNAs, consisting of 56 ceRNA pairs. These factors played extremely important roles in the regulation of testis function as key nodes in the interactive regulatory network. Our results provide insight into the functional roles of lncRNAs and miRNAs in porcine testis and offer a valuable resource for understanding the differences between Chinese indigenous and introduced Western pigs.
Collapse
Affiliation(s)
- Pei Wang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Zhipeng Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xia Zhang
- College of Life Science, Lyuliang University, Lvliang 033001, China
| | - Hailong Huo
- Yunnan Open University, Kunming 650500, China
| | - Lina Wang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Hongmei Dai
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Fuhua Yang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Guiying Zhao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| | - Jinlong Huo
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
3
|
Danga AK, Rath PC. Molecular cloning, expression and cellular localization of two long noncoding RNAs (mLINC-RBE and mLINC-RSAS) in the mouse testis. Int J Biol Macromol 2024; 255:128106. [PMID: 37979740 DOI: 10.1016/j.ijbiomac.2023.128106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Long noncoding RNAs (lncRNAs) are transcribed in complex, overlapping, sense- and antisense orientations from intronic and intergenic regions of mammalian genomes. Transcription of genome in mammalian testis is more widespread compared to other organs. LncRNAs are involved in gene expression, chromatin regulation, mRNA stability and translation of proteins during diverse cellular functions. We report molecular cloning of two novel lncRNAs (mLINC-RBE and mLINC-RSAS) and their expression by RT-PCR as well as cellular localization by RNA in-situ hybridization in the mouse testes. mLINC-RBE is an intergenic lncRNA from chromosome 4, with 16.96 % repeat sequences, expressed as a sense transcript with piRNA sequences and its expression is localized into primary spermatocytes. mLINC-RSAS is an intergenic lncRNA from chromosome 2, with 49.7 % repeat sequences, expressed as both sense- and antisense transcripts with miRNA sequences and its expression is localized into different cell types, such as Sertoli cells, primary spermatocytes and round spermatids. The lncRNAs also contain sequences for some short peptides (micropeptides). This suggests that these two repeat sequence containing, intergenic genomic sense- and antisense transcripts expressed as lncRNAs with piRNAs, miRNAs, and showing cell-type specific, differential expression may regulate important functions in mammalian testes. Such functions may be regulated by RNA structures, RNA processing and RNA-protein complexes.
Collapse
Affiliation(s)
- Ajay Kumar Danga
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pramod C Rath
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
4
|
Shi H, Yan Z, Du H, Tang Y, Song K, Yang Q, Huang X, Wang P, Gao X, Yang J, Gun S. Regulatory Effects of the Kiss1 Gene in the Testis on Puberty and Reproduction in Hezuo and Landrance Boars. Int J Mol Sci 2023; 24:16700. [PMID: 38069021 PMCID: PMC10705963 DOI: 10.3390/ijms242316700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Kisspeptin, a neuropeptide encoded by the Kiss1 gene, combines with its receptor Kiss1R to regulate the onset of puberty and male fertility by the hypothalamic-pituitary-gonadal axis. However, little is known regarding the expression signatures and molecular functions of Kiss1 in the testis. H&E staining revealed that well-arranged spermatogonia, spermatocytes, round and elongated spermatids, and spermatozoa, were observed in 4-, 6-, and 8-month-old testes compared to 1- and 3-month-old testes of Hezuo pigs; however, these were not observed in Landrance until 6 months. The diameter, perimeter, and cross-sectional area of seminiferous tubules and the perimeter and area of the tubular lumen increased gradually with age in both pigs. Still, Hezuo pigs grew faster than Landrance. The cloning results suggested that the Hezuo pigs' Kiss1 CDS region is 417 bp in length, encodes 138 amino acids, and is highly conserved in the kisspeptin-10 region. qRT-PCR and Western blot indicated that the expression trends of Kiss1 mRNA and protein were essentially identical, with higher expression levels at post-pubertal stages. Immunohistochemistry demonstrated that the Kiss1 protein was mainly located in Leydig cells and post-pubertal spermatogenic cells, ranging from round spermatids to spermatozoa. These studies suggest that Kiss1 is an essential regulator in the onset of puberty and spermatogenesis of boars.
Collapse
Affiliation(s)
- Haixia Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Hong Du
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuran Tang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Kelin Song
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaoli Gao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiaojiao Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Research Center for Swine Production Engineering and Technology, Lanzhou 730070, China
| |
Collapse
|
5
|
Derakhshan Z, Bahmanpour S, Alaee S, Fallahi J, Tabei SMB. The Role of Circular RNAs in Male Infertility and Reproductive Cancers: A Narrative Review. IRANIAN JOURNAL OF MEDICAL SCIENCES 2023; 48:527-541. [PMID: 38094281 PMCID: PMC10715113 DOI: 10.30476/ijms.2022.95302.2661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/01/2022] [Accepted: 08/28/2022] [Indexed: 12/18/2023]
Abstract
Infertility is a global health problem affecting about 15% of all couples, of which 50% are due to male infertility. Although the etiology of infertility is known in most infertile men, idiopathic male infertility remains a challenge. Therefore, there is a need for novel diagnostic methods to detect the underlying mechanisms and develop appropriate therapies. Recent studies have focused on the role of non-coding RNAs (ncRNAs) in male infertility. Circular RNAs (CircRNAs), a type of ncRNAs, are found to play a key role in the development of some pathological conditions, including cardiovascular diseases, diabetes, cancers, autoimmune diseases, etc. Several studies have reported the presence of CircRNAs and their target genes in the human reproductive system. In addition, their expression in testicular tissues, sperm cells, and seminal fluid has been identified. Abnormal expression of CircRNAs has been associated with azoospermia and asthenozoospermia in infertile men. The present narrative review provides a brief description of the role of CircRNAs in spermatogenic cells, male infertility, and reproductive cancers. In addition, some CircRNAs have been identified as potential biomarkers for disease detection and treatment.
Collapse
Affiliation(s)
- Zahra Derakhshan
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soghra Bahmanpour
- Department of Anatomy and Reproductive Biology, School of Medical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Alaee
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Bagher Tabei
- Department of Medical Genetics, School of Medical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Maternal-Fetal Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Wu Y, Li H, Zhao X, Baki G, Ma C, Yao Y, Li J, Yao Y, Wang L. Differential expression of circRNAs of testes with high and low sperm motility in Yili geese. Front Genet 2022; 13:970097. [PMID: 36226183 PMCID: PMC9548634 DOI: 10.3389/fgene.2022.970097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to explore the potential biological function of circular RNAs (circRNAs) in the sperm motility traits of Xinjiang Yili geese, and to provide a reference for analyzing the mechanism of regulation of Yili geese sperm motility. The 10 selected Xinjiang Yili Geese with high or low sperm motility (five for each group) were 3 years old, in good health, and were kept in the same feeding conditions. Yili geese were slaughtered for the collection of testicular tissue and high-throughput sequencing technology was used to screen differentially expressed circRNAs for bioinformatics analysis. Combined with the previously screened miRNAs related to the sperm motility of Yili geese, the circRNAs miRNAs regulatory network was constructed. The results showed that a total of 26,311 circRNAs were obtained from testicular tissues with high and low sperm motility, and 173 DECs were screened between the two groups (p < 0.05, |log2Foldchange|>0), of which 82 were up-regulated and 91 were down-regulated. Functional analysis of the source genes of these DECs showed that the source genes were mainly involved in biological processes. KEGG enrichment analysis showed that the source genes of DECs were mainly enriched in autophagy-animal, ubiquinone and other terpenoid-quinone biosynthesis, progesterone-mediated oocyte maturation, regulation of the actin cytoskeleton and other pathways. Furthermore, the visual regulatory network of differential circRNA-miRNA-mRNA was constructed, including 20 circRNAs, 18 miRNAs and 177 mRNAs, and nine core regulatory circRNAs were screened, including novell_circ_0045314, novel_circ_0019994 and novel_circ_0020422, etc., targeting ppy-mir-16, hsa-mir-221–3p, gga-mir-499–5p, etc. The results suggest that circRNAs may interact with miRNAs to further regulate mRNA to regulate sperm motility in Yili geese, so as to provide a reference for analyzing the molecular mechanism of sperm motility regulation.
Collapse
|
7
|
Olovnikov AM. Eco-crossover, or environmentally regulated crossing-over, and natural selection are two irreplaceable drivers of adaptive evolution: Eco-crossover hypothesis. Biosystems 2022; 218:104706. [DOI: 10.1016/j.biosystems.2022.104706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 12/31/2022]
|
8
|
Sahoo B, Choudhary RK, Sharma P, Choudhary S, Gupta MK. Significance and Relevance of Spermatozoal RNAs to Male Fertility in Livestock. Front Genet 2021; 12:768196. [PMID: 34956322 PMCID: PMC8696160 DOI: 10.3389/fgene.2021.768196] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022] Open
Abstract
Livestock production contributes to a significant part of the economy in developing countries. Although artificial insemination techniques brought substantial improvements in reproductive efficiency, male infertility remains a leading challenge in livestock. Current strategies for the diagnosis of male infertility largely depend on the evaluation of semen parameters and fail to diagnose idiopathic infertility in most cases. Recent evidences show that spermatozoa contains a suit of RNA population whose profile differs between fertile and infertile males. Studies have also demonstrated the crucial roles of spermatozoal RNA (spRNA) in spermatogenesis, fertilization, and early embryonic development. Thus, the spRNA profile may serve as unique molecular signatures of fertile sperm and may play pivotal roles in the diagnosis and treatment of male fertility. This manuscript provides an update on various spRNA populations, including protein-coding and non-coding RNAs, in livestock species and their potential role in semen quality, particularly sperm motility, freezability, and fertility. The contribution of seminal plasma to the spRNA population is also discussed. Furthermore, we discussed the significance of rare non-coding RNAs (ncRNAs) such as long ncRNAs (lncRNAs) and circular RNAs (circRNAs) in spermatogenic events.
Collapse
Affiliation(s)
- Bijayalaxmi Sahoo
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| | - Ratan K Choudhary
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Paramajeet Sharma
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Shanti Choudhary
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Mukesh Kumar Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| |
Collapse
|
9
|
Khan IM, Liu H, Zhuang J, Khan NM, Zhang D, Chen J, Xu T, Avalos LFC, Zhou X, Zhang Y. Circular RNA Expression and Regulation Profiling in Testicular Tissues of Immature and Mature Wandong Cattle ( Bos taurus). Front Genet 2021; 12:685541. [PMID: 34880896 PMCID: PMC8647812 DOI: 10.3389/fgene.2021.685541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Wandong cattle are an autochthonous Chinese breed used extensively for beef production. The breed tolerates extreme weather conditions and raw feed and is resistant to tick-borne diseases. However, the genetic basis of testis development and sperm production as well as breeding management is not well established in local cattle. Therefore, improving the reproductive efficiency of bulls via genetic selection is crucial as a single bull can breed thousands of cows through artificial insemination (AI). Testis development and spermatogenesis are regulated by hundreds of genes and transcriptomes. However, circular RNAs (circRNAs) are the key players in many biological developmental processes that have not been methodically described and compared between immature and mature stages in Bovine testes. In this study, we performed total RNA-seq and comprehensively analyzed the circRNA expression profiling of the testis samples of six bulls at 3 years and 3 months of developmental age. In total, 17,013 circRNAs were identified, of which 681 circRNAs (p-adjust < 0.05) were differentially expressed (DE). Among these DE circRNAs, 579 were upregulated and 103 were downregulated in calf and bull testes. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses revealed that the identified target genes were classified into three broad functional categories, including biological process, cellular component, and molecular function, and were enriched in the lysine degradation, cell cycle, and cell adhesion molecule pathways. The binding interactions between DE circRNAs and microRNAs (miRNAs) were subsequently constructed using bioinformatics approaches. The source genes ATM, CCNA1, GSK3B, KMT2C, KMT2E, NSD2, SUCLG2, QKI, HOMER1, and SNAP91 were found to be actively associated with bull sexual maturity and spermatogenesis. In addition, a real-time quantitative polymerase chain reaction (RT-qPCR) analysis showed a strong correlation with the sequencing data. Moreover, the developed model of Bovine testes in the current study provides a suitable framework for understanding the mechanism of circRNAs in the development of testes and spermatogenesis.
Collapse
Affiliation(s)
- Ibrar Muhammad Khan
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Hongyu Liu
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jingyi Zhuang
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Nazir Muhammad Khan
- Department of Zoology, University of Science and Technology, Bannu, Pakistan
| | - Dandan Zhang
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jingmeng Chen
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Tengteng Xu
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Lourdes Felicidad Córdova Avalos
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xinqi Zhou
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yunhai Zhang
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
10
|
circBTBD7 Promotes Immature Porcine Sertoli Cell Growth through Modulating miR-24-3p/ MAPK7 Axis to Inactivate p38 MAPK Signaling Pathway. Int J Mol Sci 2021; 22:ijms22179385. [PMID: 34502294 PMCID: PMC8431111 DOI: 10.3390/ijms22179385] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Sertoli cells are the crucial coordinators to guarantee normal spermatogenesis and male fertility. Although circular RNAs (circRNAs) exhibit developmental-stage-specific expression in porcine testicular tissues and have been thought of as potential regulatory molecules in spermatogenesis, their functions and mechanisms of action remain largely unknown, especially in domestic animals. A novel circBTBD7 was identified from immature porcine Sertoli cells using reverse transcription PCR, Sanger sequencing, and fluorescence in situ hybridization assays. Functional assays illustrated that circBTBD7 overexpression promoted cell cycle progression and cell proliferation, as well as inhibited cell apoptosis in immature porcine Sertoli cells. Mechanistically, circBTBD7 acted as a sponge for the miR-24-3p and further facilitated its target mitogen-activated protein kinase 7 (MAPK7) gene. Overexpression of miR-24-3p impeded cell proliferation and induced cell apoptosis, which further attenuated the effects of circBTBD7 overexpression. siRNA-induced MAPK7 deficiency resulted in a similar effect to miR-24-3p overexpression, and further offset the effects of miR-24-3p inhibition. Both miR-24-3p overexpression and MAPK7 knockdown upregulated the p38 phosphorylation activity. The SB202190 induced the inhibition of p38 MAPK pathway and caused an opposite effect to that of miR-24-3p overexpression and MAPK7 knockdown. Collectively, circBTBD7 promotes immature porcine Sertoli cell growth through modulating the miR-24-3p/MAPK7 axis to inactivate the p38 MAPK signaling pathway. This study expanded our knowledge of noncoding RNAs in porcine normal spermatogenesis through deciding the fate of Sertoli cells.
Collapse
|