1
|
Zhang Q, Huang J, Fu Y, Chen J, Wang W. Genome-wide identification and expression profiles of sex-related gene families in the Pacific abalone Haliotis discus hannai. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101205. [PMID: 38364653 DOI: 10.1016/j.cbd.2024.101205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
In recent years, members of the Dmrt family, TGF-β superfamily and Sox family have been recognized as crucial genes for sex determination/differentiation across diverse animal species. Nevertheless, knowledge regarding the abundance and potential functions of these genes in abalone remains limited. In this study, a total of 5, 10, and 7 members of the Dmrt family, the TGF-β superfamily and the Sox family, respectively, were identified in the Pacific abalone Haliotis discus hannai. Sequence characteristics, phylogenetic relationships and spatiotemporal expression profiles of these genes were investigated. Notably, HdDmrt-04 (Dmrt1/1L-like) emerged as a potential mollusc-specific gene with a preponderance for expression in the testis. Interestingly, none of the TGF-β superfamily members exhibited specific or elevated expression in the gonads, highlighting the need for further investigation into their role in abalone sex differentiation. The Sox proteins in H. discus hannai were categorized into 7 subfamilies: B1, B2, C, D, E, F, and H. Among them, HdSox-07 (SoxH-like) was observed to play a crucial role in testis development, while HdSox-03 (SoxB1-like) and HdSox-04 (SoxC-like) probably cooperate in abalone ovary development. Taken together, the results of the present study suggested that HdDmrt-04 and HdSox-07 can be used as male-specific markers for gonad differentiation in H. discus hannai and imply conservation of their functions across invertebrates and vertebrates. Our findings provide new insights into the evolution and genetic structure of the Dmrt family, the TGF-β superfamily and the Sox family in abalone and pave the way for a deeper understanding of sex differentiation in gastropods.
Collapse
Affiliation(s)
- Qian Zhang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou 350108, China
| | - Jianfang Huang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou 350108, China
| | - Yangtao Fu
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Jianming Chen
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou 350108, China.
| | - Wei Wang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou 350108, China.
| |
Collapse
|
2
|
Martín-Manzo MV, Morelos-Castro RM, Munguia-Vega A, Soberanes-Yepiz ML, Cortés-Jacinto E. Transcriptome analysis of reproductive tract tissues of male river prawn Macrobrachium americanum. Mol Biol Rep 2024; 51:259. [PMID: 38302799 DOI: 10.1007/s11033-023-09125-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/06/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND The river prawn, Macrobrachium americanum (M. americanum), is one of the largest prawns of the genus in Latin America and is an amphidromous species distributed along the Pacific coast of America. This prawn has commercial value due to its size and taste, making it a good option for aquaculture production. Its culture has been attempted in ponds and concrete tanks, but no successful technique can still support commercial production. Understanding the mechanisms that regulate reproduction at the molecular level is very important. This knowledge can provide tools for manipulating transcripts, which could increase the number or size of animals in the culture. Our understanding of the mechanism that regulates the reproduction of M. americanum at the molecular level is limited. AIM Perform and analyze the transcriptome assembly of the testes, vas deferens, and terminal ampulla of M. americanum. to provide new molecular information about its reproduction. METHODS AND RESULTS The cDNA library was constructed and sequenced for each tissue to identify novel transcripts. A combined transcriptome with the three tissues was assembled using Trinity software. Unigenes were annotated using BLASTx and BLAST2GO. The transcriptome assembly generated 1,059,447 unigenes, of which 7222 genes had significant hits (e-value < 1 × 10-5) when compared against the Swiss-Prot database. Around 75 genes were related to sex determination, testis development, spermatogenesis, spermiogenesis, fertilization, maturation of testicular cells, neuropeptides, hormones, hormone receptors, and/or embryogenesis. CONCLUSIONS These results provide new molecular information about M. americanum reproduction, representing a reference point for further genetic studies of this species.
Collapse
Affiliation(s)
- Miriam Victoria Martín-Manzo
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Playa Palo de Santa Rita Sur, Av. Instituto Politécnico Nacional 195, 23096, La Paz, BCS, Mexico
| | - Rosa María Morelos-Castro
- Centro de Investigaciones Biológicas del Noroeste Tepic, Investigadoras E Investigadores Por México-CONACYT. Unidad Nayarit, Nayarit, Mexico
| | - Adrian Munguia-Vega
- Applied Genomics Lab, Av. Gral. Félix Ortega Aguilar, 23000, La Paz, Baja California Sur, Mexico
- Conservation Genetics Laboratory, The University of Arizona, Tucson, AZ, 85721, USA
| | - Maritza Lourdes Soberanes-Yepiz
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Playa Palo de Santa Rita Sur, Av. Instituto Politécnico Nacional 195, 23096, La Paz, BCS, Mexico
| | - Edilmar Cortés-Jacinto
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Playa Palo de Santa Rita Sur, Av. Instituto Politécnico Nacional 195, 23096, La Paz, BCS, Mexico.
| |
Collapse
|
3
|
Wang D, Pan Z, Wang G, Ye B, Wang Q, Zuo Z, Zou J, Xie S. Gonadal Transcriptome Analysis and Sequence Characterization of Sex-Related Genes in Cranoglanis bouderius. Int J Mol Sci 2022; 23:ijms232415840. [PMID: 36555482 PMCID: PMC9779447 DOI: 10.3390/ijms232415840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 12/15/2022] Open
Abstract
In China, the Cranoglanis bouderius is classified as a national class II-protected animal. The development of C. bouderius populations has been affected by a variety of factors over the past few decades, with severe declines occurring. Considering the likelihood of continued population declines of the C. bouderius in the future, it is critical to investigate the currently unknown characteristics of gonadal differentiation and sex-related genes for C. bouderius conservation. In this study, the Illumina sequencing platform was used to sequence the gonadal transcriptome of the C. bouderius to identify the pathways and genes related to gonadal development and analyze the expression differences in the gonads. A total of 12,002 DEGs were identified, with 7220 being significantly expressed in the ovary and 4782 being significantly expressed in the testis. According to the functional enrichment results, the cell cycle, RNA transport, apoptosis, Wnt signaling pathway, p53 signaling pathway, and prolactin signaling pathway play important roles in sex development in the C. bouderius. Furthermore, the sequence characterization and evolutionary analysis revealed that AMH, DAX1, NANOS1, and AR of the C. bouderius are highly conserved. Specifically, the qRT-PCR results from various tissues showed significant differences in AMH, DAX1, NANOS1, and AR expression levels in the gonads of both sexes of C. bouderius. These analyses indicated that AMH, DAX1, NANOS1, and AR may play important roles in the differentiation and development of C. bouderius gonads. To our best knowledge, this study is the first to analyze the C. bouderius gonadal transcriptome and identify the structures of sex-related genes, laying the foundation for future research.
Collapse
Affiliation(s)
- Dongjie Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhengkun Pan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Guoxia Wang
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, Guangzhou 510640, China
- Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Bin Ye
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qiujie Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhiheng Zuo
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jixing Zou
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (J.Z.); (S.X.); Tel.: +86-020-87571321 (J.Z.); +86-020-87571321 (S.X.)
| | - Shaolin Xie
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (J.Z.); (S.X.); Tel.: +86-020-87571321 (J.Z.); +86-020-87571321 (S.X.)
| |
Collapse
|
4
|
Identification and Expression Analysis of Dsx and Its Positive Transcriptional Regulation of IAG in Black Tiger Shrimp ( Penaeus monodon). Int J Mol Sci 2022; 23:ijms232012701. [PMID: 36293554 PMCID: PMC9604489 DOI: 10.3390/ijms232012701] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Doublesex (Dsx) is a polymorphic transcription factor of the DMRTs family, which is involved in male sex trait development and controls sexual dimorphism at different developmental stages in arthropods. However, the transcriptional regulation of the Dsx gene is largely unknown in decapods. In this study, we reported the cDNA sequence of PmDsx in Penaeus monodon, which encodes a 257 amino acid polypeptide. It shared many similarities with Dsx homologs and has a close relationship in the phylogeny of different species. We demonstrated that the expression of the male sex differentiation gene Dsx was predominantly expressed in the P. monodon testis, and that PmDsx dsRNA injection significantly decreased the expression of the insulin-like androgenic gland hormone (IAG) and male sex-determining gene while increasing the expression of the female sex-determining gene. We also identified a 5′-flanking region of PmIAG that had two potential cis-regulatory elements (CREs) for the PmDsx transcription. Further, the dual-luciferase reporter analysis and truncated mutagenesis revealed that PmDsx overexpression significantly promoted the transcriptional activity of the PmIAG promoter via a specific CRE. These results suggest that PmDsx is engaged in male reproductive development and positively regulates the transcription of the PmIAG by specifically binding upstream of the promoter of the PmIAG. It provides a theoretical basis for exploring the sexual regulation pathway and evolutionary dynamics of Dmrt family genes in P. monodon.
Collapse
|
5
|
Yang C, Shan B, Liu Y, Wang L, Liu M, Yao T, Sun D. Transcriptomic analysis of male three-spot swimming crab (Portunus sanguinolentus) infected with the parasitic barnacle Diplothylacus sinensis. FISH & SHELLFISH IMMUNOLOGY 2022; 128:260-268. [PMID: 35934240 DOI: 10.1016/j.fsi.2022.07.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Diplothylacus sinensis is reported as an intriguing parasitic barnacle that can negatively affect the growth, molting, reproduction in several commercially important portunid crabs. To better understand the molecular mechanisms of host-parasite interactions, we characterized the gene expression profiles from the healthy and D. sinensis infected Portunus sanguinolentus by high-through sequence method. Totally, the transcriptomic analysis generated 52, 266, 600 and 51, 629, 604 high quality reads from the infected and control groups, respectively. The clean reads were assembled to 90,740 and 69,314 unigenes, with the average length of 760 bp and 709 bp, respectively. The expression analysis showed that 18,959 genes were significantly changed by the parasitism of D. sinensis, including 4769 activated genes and 14,190 suppressed genes. The differentially expressed genes were categorized into 258 KEGG pathways and 647 GO terms. The GO analysis mapped 13 DEGs related to immune system process and 32 DEGs related to immune response, respectively, suggesting a potential alteration of transcriptional expression patterns in complement cascades of P. sanguinolentus. Additionally, 4 representative molting-related genes were down-regulated in parasitized group, indicating D. sinensis infection appeared to suppress the producing of ecdysteroid hormones. In conclusion, the present study improves our understanding on parasite-host interaction mechanisms, which focuses the function of Ecdysone receptor, Toll-like receptor and cytokine receptor of crustacean crabs infestation with rhizocephalan parasites.
Collapse
Affiliation(s)
- Changping Yang
- Tropical Aquaculture Research and Development Center of South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Sanya, 572018, China; Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Binbin Shan
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Yan Liu
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Liangming Wang
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Manting Liu
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Tuo Yao
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Dianrong Sun
- Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
| |
Collapse
|