1
|
Hao Q, Gao X, Sun M, Liu Y. Genomic insights into fibrinogen-related proteins and expression analysis in the Pacific white shrimp, Litopenaeusvannamei. FISH & SHELLFISH IMMUNOLOGY 2025; 157:110113. [PMID: 39788463 DOI: 10.1016/j.fsi.2025.110113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/19/2024] [Accepted: 01/07/2025] [Indexed: 01/12/2025]
Abstract
Fibrinogen-related domain (FReD) containing proteins are an evolutionarily conserved immune gene family characterized by the C-terminal fibrinogen (FBG) and diverse N-terminal domains. To understand the complexity of this family in crustaceans, we performed genome screening and identified 43 full-length FReDs encoding genes in Litopenaeus vannamei. Structural classification analysis revealed these putative FReDs could be divided into six types, including two reported types (LvFReDI and II) and four new types (LvFReDIII-VI). Sequence and phylogenetic analysis showed that FBG domains were highly conserved throughout and phylogeny clusters correlated strongly with gene type. We analyzed the temporal and spatial expression patterns of LvFReD genes based on the transcriptomes of developmental stages, adult tissues or pathogen infected tissues of L. vannamei. Most LvFReDs were expressed from larval in membrane stage, and exhibited tissue-specific expression patterns and immune-responsive transcription after challenge with bacteria or virus. Further time-course expression analysis suggested that LvFReDII genes with additional coiled-coil region were more sensitive to pathogens than LvFReDI genes. Our findings provided comprehensive gene sequence resources and expression profiles of FReD genes in shrimp, which give insights into clarifying the diversity and function of these genes in crustaceans.
Collapse
Affiliation(s)
- Qiang Hao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xiuyan Gao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Mingzhe Sun
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China
| | - Yuan Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266071, China.
| |
Collapse
|
2
|
Gao X, Zhu Y, Qian Q, Chen A, Qin L, Tang X, Jiang Q, Zhang X. The Immune Defense Response and Immune-Related Genes Expression in Macrobrachium nipponense Infected with Decapod Iridescent Virus 1 (DIV1). Animals (Basel) 2024; 14:2864. [PMID: 39409813 PMCID: PMC11475833 DOI: 10.3390/ani14192864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Macrobrachium nipponense is a significant cultivated species in China. However, decapod iridescent virus 1 (DIV1), as a newly discovered crustacean-lethal virus, has resulted in significant financial losses for the M. nipponense industry. In order to examine the immunological response of M. nipponense to DIV1, we conducted transcriptome analysis of the hepatopancreas from M. nipponense infected with DIV1 using RNA-seq. RNA sequencing analysis identified a combined total of 41,712 assembled unigenes, and 7014 genes that showed differential expression were identified in the group infected with DIV1, compared to the control group. Among these DEGs, 3952 were found to be up-regulated, while 3062 were down-regulated; many well-characterized DEGs were involved in innate immune defense, particularly involving the C-type lectin receptor signaling pathway, complement and coagulation cascades, phagosome, lysosome and PPAR signaling pathway. Moreover, the expression levels of well-known immune-related genes (dorsal, wnt6, lectin, caspase, integrin, hsp70) in the hepatopancreas and hemolymph were investigated by Quantitative real-time PCR (qRT-PCR), and the findings demonstrated a significant increase in gene expression in the hepatopancreas and hemolymph at various time points after infection. The results acquired in this study offered further comprehensive understanding of the immunological response of M. nipponense to DIV1 infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (X.G.); (Y.Z.); (Q.Q.); (A.C.); (L.Q.); (X.T.); (Q.J.)
| |
Collapse
|
3
|
Lin J, Wan H, Xue H, He Y, Peng B, Zhang Z, Wang Y. Transcriptomics reveals different response mechanisms of Litopenaeus vannamei hemocytes to injection of Vibrio parahaemolyticus and WSSV. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101201. [PMID: 38340389 DOI: 10.1016/j.cbd.2024.101201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/21/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
As the most important cultural crustacean species worldwide, studies about Pacific white shrimp (Litopenaeus vannamei) have received more attention. It has been well-documented that various pathogens could infect L. vannamei, resulting in huge economic losses. The studies about the responding mechanism of L. vannamei to sole pathogens such as Vibrio parahaemolyticus and white spot virus (WSSV) have been extensively reported, while the studies about the differently responding mechanisms remain unclear. In the present study, we identified the differently expressed genes (DEGs) of L. vannamei hemocytes post V. parahaemolyticus and WSSV infection with RNA-seq technology and compared the DEGs between the two groups. The results showed 2672 DEGs post the V. parahaemolyticus challenge (1079 up-regulated and 1593 down-regulated genes), while 1146 DEGs post the WSSV challenge (1067 up-regulated and 513 down-regulated genes). In addition, we screened the genes that simultaneously respond to WSSV and V. parahaemolyticus (434), solely respond to WSSV (1146), and V. parahaemolyticus challenge (2238), respectively. Six DEGs involved in innate immunity were quantified to validate the RNA-seq results, and the results confirmed the high consistency of both methods. Furthermore, we found plenty of innate immunity-related genes that responded to V. parahaemolyticus and WSSV infection, including pattern recognition receptors (PRRs), the proPO activating system, antimicrobial peptides (AMPs), and other immunity-related proteins. The results revealed that they were differently expressed after different pathogen challenges, demonstrating the complex and specific recognition systems involved in defending against the invasion of different pathogens in the environment. The present study improved our understanding of the molecular response of hemocytes of L. vannamei to V. parahaemolyticus and WSSV stimulation.
Collapse
Affiliation(s)
- Jiaming Lin
- College of Marine Biology, Xiamen Ocean Vocational College, Xiamen 361100, China; Xiamen Key Laboratory of Intelligent Fishery, Xiamen 361100, China
| | - Haifu Wan
- Fisheries College, Jimei University, Xiamen 361021, China; Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen 361021, China
| | - Haibo Xue
- College of Marine Biology, Xiamen Ocean Vocational College, Xiamen 361100, China; Xiamen Key Laboratory of Intelligent Fishery, Xiamen 361100, China
| | - Yibin He
- College of Marine Biology, Xiamen Ocean Vocational College, Xiamen 361100, China; Xiamen Key Laboratory of Intelligent Fishery, Xiamen 361100, China
| | - Bohao Peng
- Fisheries College, Jimei University, Xiamen 361021, China; Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen 361021, China
| | - Ziping Zhang
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yilei Wang
- Fisheries College, Jimei University, Xiamen 361021, China; Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen 361021, China.
| |
Collapse
|
4
|
López-Landavery EA, Urquizo-Rosado Á, Saavedra-Flores A, Tapia-Morales S, Fernandino JI, Zelada-Mázmela E. Cellular and transcriptomic response to pathogenic and non-pathogenic Vibrio parahaemolyticus strains causing acute hepatopancreatic necrosis disease (AHPND) in Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109472. [PMID: 38438059 DOI: 10.1016/j.fsi.2024.109472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
The shrimp industry has historically been affected by viral and bacterial diseases. One of the most recent emerging diseases is Acute Hepatopancreatic Necrosis Disease (AHPND), which causes severe mortality. Despite its significance to sanitation and economics, little is known about the molecular response of shrimp to this disease. Here, we present the cellular and transcriptomic responses of Litopenaeus vannamei exposed to two Vibrio parahaemolyticus strains for 98 h, wherein one is non-pathogenic (VpN) and the other causes AHPND (VpP). Exposure to the VpN strain resulted in minor alterations in hepatopancreas morphology, including reductions in the size of R and B cells and detachments of small epithelial cells from 72 h onwards. On the other hand, exposure to the VpP strain is characterized by acute detachment of epithelial cells from the hepatopancreatic tubules and infiltration of hemocytes in the inter-tubular spaces. At the end of exposure, RNA-Seq analysis revealed functional enrichment in biological processes, such as the toll3 receptor signaling pathway, apoptotic processes, and production of molecular mediators involved in the inflammatory response of shrimp exposed to VpN treatment. The biological processes identified in the VpP treatment include superoxide anion metabolism, innate immune response, antimicrobial humoral response, and toll3 receptor signaling pathway. Furthermore, KEGG enrichment analysis revealed metabolic pathways associated with survival, cell adhesion, and reactive oxygen species, among others, for shrimp exposed to VpP. Our study proves the differential immune responses to two strains of V. parahaemolyticus, one pathogenic and the other nonpathogenic, enlarges our knowledge on the evolution of AHPND in L. vannamei, and uncovers unique perspectives on establishing genomic resources that may function as a groundwork for detecting probable molecular markers linked to the immune system in shrimp.
Collapse
Affiliation(s)
- Edgar A López-Landavery
- Laboratorio de Genética, Fisiología y Reproducción, Facultad de Ciencias, Universidad Nacional del Santa, Nuevo Chimbote, Ancash, Peru.
| | - Ángela Urquizo-Rosado
- Laboratorio de Genética, Fisiología y Reproducción, Facultad de Ciencias, Universidad Nacional del Santa, Nuevo Chimbote, Ancash, Peru
| | - Anaid Saavedra-Flores
- Laboratorio de Genética, Fisiología y Reproducción, Facultad de Ciencias, Universidad Nacional del Santa, Nuevo Chimbote, Ancash, Peru
| | - Sandra Tapia-Morales
- Laboratorio de Genética, Fisiología y Reproducción, Facultad de Ciencias, Universidad Nacional del Santa, Nuevo Chimbote, Ancash, Peru
| | - Juan I Fernandino
- Laboratorio de Genética, Fisiología y Reproducción, Facultad de Ciencias, Universidad Nacional del Santa, Nuevo Chimbote, Ancash, Peru; Laboratorio de Biología del Desarrollo - Instituto Tecnológico de Chascomús. INTECH (CONICET-UNSAM), Argentina; Escuela de Bio y Nanotecnologías (UNSAM). Chascomús, Argentina.
| | - Eliana Zelada-Mázmela
- Laboratorio de Genética, Fisiología y Reproducción, Facultad de Ciencias, Universidad Nacional del Santa, Nuevo Chimbote, Ancash, Peru.
| |
Collapse
|
5
|
Guo S, Chen M, Li W, Wan Q, Xu M. Analysis of Alternative Splicing and Long Noncoding RNAs After the Edwardsiella anguillarum Infected the Immunized European Eels (Anguilla anguilla) Revealed the Role of Outer Membrane Protein A in OmpA Subunit Vaccine. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023:10.1007/s10126-023-10210-x. [PMID: 37171708 DOI: 10.1007/s10126-023-10210-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023]
Abstract
Edwardsiella anguillarum is a bacterium that commonly infects cultivated eels. Outer membrane protein A (OmpA) emulsified with Freund's adjuvant has been shown to be an effective fishery vaccine against this pathogen. However, the specific roles of OmpA in the vaccine have not been fully explored. In this study, we performed RNA-seq in the liver of a European eel (Anguilla anguilla) after challenge with E. anguillarum in eels previously immunized with an OmpA subunit vaccine. Our aim was to elucidate the differentially alternative splicing (DAS) and differentially expressed long noncoding RNAs (DE-lncRNAs) using a genome-wide transcriptome. The results showed after that at 28 days post-immunization, eels challenged with E. anguillarum (Con_inf) exhibited severe pathological changes in the liver. In contrast, the OmpA infused eels (OmpA_inf group) showed infiltrated lymphocytes, while Freund's adjuvant-inoculated eels (FCIA_inf group) showed edema of hepatocytes and blood coagulation. The relative percent survival (RPS) was 77.7% and 44.4% for OmpA_inf and FCIA_inf compared to the Con_inf group. We identified 37 DE-lncRNAs and 293 DAS genes between OmpA_inf and FCIA_inf. Interactions between DAS gene-expressed proteins indicated that 66 expressed proteins formed 20 networks. Additionally, 33 DE-lncRNAs interacted with 194 target genes formed 246 and 41 networks in co-expression and co-location. Taken together, our findings demonstrate that the OmpA subunit vaccine elicits a higher RPS and provides novel insights into the role of OmpA through DAS genes and DE-lncRNAs perspective. These results are significant for the development of fishery subunit vaccines.
Collapse
Affiliation(s)
- Songlin Guo
- Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Fisheries College, Jimei University, Xiamen, 361021, China.
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, Fujian, China.
| | - Minxia Chen
- Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Wanbo Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, Fujian, China
| | - Qijuan Wan
- Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Ming Xu
- Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Fisheries College, Jimei University, Xiamen, 361021, China
| |
Collapse
|
6
|
Duangsuwan P, Thaweethamsawee P, Sobhon P. Ultrastructure of cells constituting lymphoid tubules and circulating hemocytes in Penaeus monodon. FISH & SHELLFISH IMMUNOLOGY 2022; 131:1040-1050. [PMID: 36419304 DOI: 10.1016/j.fsi.2022.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The two main groups of cells in the lymphoid tubule wall of Penaeus monodon are fixed cells and migrating hemocytes. Fixed cells include endothelial, stromal, and capsular cells. Together, they form the scaffold that defines the structure of the lymphoid tubule and provide physical support as well as a niche for transmigrating hemocytes. The luminal surface of lymphoid tubule was lined by elongated, spindle-shaped endothelial cells with a centrally located nucleus and rather thick plasma membrane. Stromal cells were the smallest type of fixed cell. They are stellate cells located between the inner endothelial and outer capsular cells. These cells formed a cyto-reticular network for migrating hemocytes. Capsular cells have a flattened and irregular shape with a ruffled border with long filamentous microvilli. The nucleus is centrally located within a small mass of cytoplasm. Together they form the outermost layer of the lymphoid tubular wall. Transmigrating hemocytes within the lymphoid tubules, as opposed to circulating hemocytes, were classified into hyaline (HH), small granular (SGH) and large granular (LGH) hemocytes. The HH have very few granules and a few cytoplasmic organelles, reflecting low synthetic activity. The granular hemocytes (SGH and LGH), despite being different in size, have similar ultrastructural characteristics. They contain high amounts of rough endoplasmic reticulum, ribosomes, mitochondria, and three types of granules. These characteristics implicate their higher synthetic as well as immunologic activities. Based on these characteristics we believe that all the hemocytes belong to a single line of cell differentiation.
Collapse
Affiliation(s)
- Pornsawan Duangsuwan
- Anatomy Program, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla, 90112, Thailand.
| | - Pinij Thaweethamsawee
- Anatomy Program, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla, 90112, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok, 10400, Thailand
| |
Collapse
|
7
|
Zhu K, Yang F, Li F. Molecular markers for hemocyte subpopulations in crayfish Cherax quadricarinatus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 132:104407. [PMID: 35364134 DOI: 10.1016/j.dci.2022.104407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/23/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Semigranular cells (SGCs) and granular cells (GCs) are two dominant groups of circulating hemocytes in crayfish Cherax quadricarinatus. Molecular markers are required for the clear classification of the hemocytes and the research of their function and differentiation. In this study, we compared the protein content of GCs and SGCs by using two workflows: one-dimensional gel electrophoresis followed by LC-MS/MS and in-solution digestion of cell lysate followed by LC-MS/MS. Cell type-specific proteins were identified, and their expression in SGCs and GCs was further investigated by RT-PCR, Western blotting, and immunofluorescence analysis. Three molecular markers for GCs (peroxinectin, a mannose-binding protein, and prophenoloxidase-activating enzyme 2a) and three molecular markers for SGCs (a vitelline membrane outer layer protein I-like protein, a C-type lectin, and a peptidase) were identified. The application of some of the markers in Eriocheir sinensis was also analyzed. These molecular markers are useful tools for the research of crustaceans hemocytes.
Collapse
Affiliation(s)
- Kun Zhu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Feng Yang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
| | - Fang Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, PR China.
| |
Collapse
|
8
|
Yang H, Ji T, Xiong H, Zhang Y, Wei W, Liu Q. Transcriptome profiles of red swamp crayfish Procambarus clarkii hematopoietic tissue in response to WSSV challenge. FISH & SHELLFISH IMMUNOLOGY 2022; 122:146-152. [PMID: 35124203 DOI: 10.1016/j.fsi.2022.01.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
The crayfish Procambarus clarkii could achieve a high cumulative mortality after WSSV infections. To better understand the immune response to WSSV in hematopoietic tissue, the present study investigated the immunological response of P. clarkii and analyzed the expression of some hematopoietic cytokines. After assembly, there was an average of 47,712,411 clean reads were obtained in control and treatment groups. A total of 35,945 unigenes were discovered with N50 length of 1554 bp. Under functional classification, enrichment, and pathway analysis using different database, there were about 257 differentially expressed genes (DEGs) identified, of which 139 were up-regulated and 118 were down-regulated. The GO function analysis of these DEGs were mostly participated in activation of immune response, complement activation, complement binding, negative regulation of humoral immune response and secretory granule membrane. Under KEGG analysis, these DEGs were involved in ECM-receptor interaction, HIF-1 signaling pathway, Glycolysis/Gluconeogenesis, Thyroid hormone signaling pathway and Glucagon signaling pathway. The real-time quantitative PCR (RT-qPCR) analysis of 9 selected genes confirmed the reliability of RNA-Seq results. The present research provide for the first time the transcriptomic profile of P. clarkii hematopoietic tissue in response to WSSV infection and reveals the astakines may play important roles in antiviral immune response. The results of the present study will further enrich the theoretical basis of the crayfish immune system and provide new ideas for disease prevention and control.
Collapse
Affiliation(s)
- Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Tongwei Ji
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Haoran Xiong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Wenzhi Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Qiuning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetland, Yancheng Teachers University, Yancheng, 224007, China.
| |
Collapse
|
9
|
Sun M, Li S, Jin S, Li X, Xiang J, Li F. A Novel TRIM9 Protein Promotes NF-κB Activation Through Interacting With LvIMD in Shrimp During WSSV Infection. Front Immunol 2022; 13:819881. [PMID: 35281067 PMCID: PMC8904877 DOI: 10.3389/fimmu.2022.819881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/28/2022] [Indexed: 11/25/2022] Open
Abstract
The TRIpartite Motif (TRIM) proteins play key roles in cell differentiation, apoptosis, development, autophagy, and innate immunity in vertebrates. In the present study, a novel TRIM9 homolog (designated as LvTRIM9-1) specifically expressed in the lymphoid organ of shrimp was identified from the Pacific whiteleg shrimp Litopenaeus vannamei. Its deduced amino acid sequence possesses the typical features of TRIM proteins, including a RING domain, two B-boxes, a coiled-coil domain, a FN3 domain, and a SPRY domain. The transcripts of LvTRIM9-1 were mainly located in the lymphoid tubules of the lymphoid organ. Knockdown of LvTRIM9-1 could apparently inhibit the transcriptions of some genes from white spot syndrome virus (WSSV) and reduce the viral propagation in the lymphoid organ. Overexpression of LvTRIM9-1 in mammalian cells could activate the promoter activity of NF-κB, and an in vivo experiment in shrimp showed that knockdown of LvTRIM9-1 reduced the expression of LvRelish in the lymphoid organ. Yeast two-hybridization and co-immunoprecipitation (Co-IP) assays confirmed that LvTRIM9-1 could directly interact with LvIMD, a key component of the IMD pathway, through its SPRY domain. These data suggest that LvTRIM9-1 could activate the IMD pathway in shrimp via interaction with LvIMD. This is the first evidence to show the regulation of a TRIM9 protein on the IMD pathway through its direct interaction with IMD, which will enrich our knowledge on the role of TRIM proteins in innate immunity of invertebrates.
Collapse
Affiliation(s)
- Mingzhe Sun
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Shihao Li
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Songjun Jin
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xuechun Li
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianhai Xiang
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Fuhua Li
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|