1
|
Mählis G, Kleine A, Lüschow D, Bartel A, Wiegard M, Thoene-Reineke C. Clicker Training as an Applied Refinement Measure in Chickens. Animals (Basel) 2023; 13:3836. [PMID: 38136873 PMCID: PMC10740453 DOI: 10.3390/ani13243836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
When using chickens in animal studies, the handling of these animals for sample collection or general examinations is considered stressful due to their prey nature. For the study presented here, plasma and salivary corticosterone as well as New Area Test behavior and fecal output were used to evaluate whether it is possible to influence this stress perception using a three-week clicker training program. The results indicate that clicker training seems to be a suitable refinement measure in the sense of cognitive enrichment for the husbandry of this species. However, since it was also shown that three-week training was not sufficient to sustainably reduce the stress perception with regard to prolonged stressor exposure, and since it was also evident that manipulations such as routine blood sampling are perceived as less stressful than assumed, further studies with prolonged training intervals and situations with higher stressor potential are warranted. Also, further parameters for training assessment must be considered. For the general use of training as a supportive measure in animal experiments, its proportionality must be considered, particularly considering the expected stress and adequate training time.
Collapse
Affiliation(s)
- Gordon Mählis
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, School of Veterinary Medicine, Freie Universität Berlin, Königsweg 67, 14163 Berlin, Germany; (M.W.); (C.T.-R.)
| | - Anne Kleine
- Division for Poultry, Farm Animal Clinic, School of Veterinary Medicine, Freie Universität Berlin, Königsweg 63, 14163 Berlin, Germany; (A.K.); (D.L.)
| | - Dörte Lüschow
- Division for Poultry, Farm Animal Clinic, School of Veterinary Medicine, Freie Universität Berlin, Königsweg 63, 14163 Berlin, Germany; (A.K.); (D.L.)
| | - Alexander Bartel
- Institute of Veterinary Epidemiology and Biostatistics, School of Veterinary Medicine, Freie Universität Berlin, Königsweg 67, 14163 Berlin, Germany
| | - Mechthild Wiegard
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, School of Veterinary Medicine, Freie Universität Berlin, Königsweg 67, 14163 Berlin, Germany; (M.W.); (C.T.-R.)
| | - Christa Thoene-Reineke
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, School of Veterinary Medicine, Freie Universität Berlin, Königsweg 67, 14163 Berlin, Germany; (M.W.); (C.T.-R.)
| |
Collapse
|
2
|
Silva Tesser GL, Junior NR, Campos FP, Costa APGC, Sartor H, Kaufmann C, de Vargas Junior JG, Eyng C, Nunes RV. Effects of feeding diets with zinc-l-selenomethionine on growth performance of broilers subjected to cyclic heat stress. Trop Anim Health Prod 2023; 55:384. [PMID: 37897539 DOI: 10.1007/s11250-023-03779-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/10/2023] [Indexed: 10/30/2023]
Abstract
Limited information exists on the use of zinc-l-selenomethionine (Zn-L-SeMet) in broiler diets and its effects on the growth performance, body temperature, mortality rates, blood profile, and gene expression, especially when animals are reared under cyclic heat stress conditions. This study aimed to investigate the impact of Zn-L-SeMet in broiler diets from 1 to 42 days of age reared under cyclic heat stress and its effects on growth performance, cloacal temperatures, mortality rate, blood parameters, and insulin-like growth factor 1 (IGF-1) and growth hormone receptor (GHR) gene expression in the breast muscle. A total of 1000 male Cobb 500® broiler chicks were randomly assigned to five treatments: 0, 0.15, 0.23, 0.47, and 1.30 mg/kg of Zn-L-SeMet. Each treatment consisted of 10 replicates with 20 birds each. No statistically significant differences in growth performance were observed from 1 to 21 days of age (P > 0.05). However, from 1 to 42 days, feed intake (FI) and feed conversion ratio (FCR) decreased linearly (P < 0.05). Cloacal temperatures showed no significant effects (P > 0.05), while overall mortality rate exhibited a quadratic response (P < 0.05), with the optimal inclusion level predicted to reduce broiler mortality at 0.71 mg/kg. Triglyceride (TRG) levels increased with 0.97 mg/kg (P < 0.05), and gama-glutamil transferase (GGT) levels decreased with the inclusion of 1.19 mg/kg (P < 0.05). No significant effects on IGF-1 and GHR gene expression were found (P > 0.05). In conclusion, the inclusion of 1.30 mg/kg of Zn-L-SeMet in diets of heat-stressed broilers improved growth performance from 1 to 42 days of age. An inclusion of 0.71 mg/kg reduced mortality rate, while 0.97 mg and 1.19 mg increased and reduced TRG and GGT levels, respectively.
Collapse
Affiliation(s)
- Guilherme Luis Silva Tesser
- Department of Animal Science, Western Paraná State University, Marechal Cândido Rondon, PR, 85960-000, Brazil.
| | - Nilton Rohloff Junior
- Department of Animal Science, Western Paraná State University, Marechal Cândido Rondon, PR, 85960-000, Brazil
| | - Felipe Potenza Campos
- Department of Animal Science, Western Paraná State University, Marechal Cândido Rondon, PR, 85960-000, Brazil
| | | | - Heloísa Sartor
- Department of Animal Science, Western Paraná State University, Marechal Cândido Rondon, PR, 85960-000, Brazil
| | - Cristine Kaufmann
- Department of Animal Science, Western Paraná State University, Marechal Cândido Rondon, PR, 85960-000, Brazil
| | | | - Cinthia Eyng
- Department of Animal Science, Western Paraná State University, Marechal Cândido Rondon, PR, 85960-000, Brazil
| | - Ricardo Vianna Nunes
- Department of Animal Science, Western Paraná State University, Marechal Cândido Rondon, PR, 85960-000, Brazil
| |
Collapse
|
3
|
Orhan C, Sahin E, Tuzcu M, Sahin N, Celik A, Ojalvo SP, Sylla S, Komorowski JR, Sahin K. Nicotinamide Riboside and Phycocyanin Oligopeptides Affect Stress Susceptibility in Chronic Corticosterone-Exposed Rats. Antioxidants (Basel) 2023; 12:1849. [PMID: 37891928 PMCID: PMC10604757 DOI: 10.3390/antiox12101849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Nicotinamide riboside (NR) is an NAD+ precursor capable of regulating mammalian cellular metabolism. Phycocyanin oligopeptide (PC), a phytonutrient found in blue-green algae, has antioxidant and anti-inflammatory properties. This study explored the effects of NR, PC, and their combination on the telomere length as well as inflammatory and antioxidant status of rats under chronic stress conditions (CS). Forty-nine rats were allocated into seven groups: control, chronic stress (CS), CS with NR (26.44 mg/kg), a low dose of 2.64 mg/kg of PC (PC-LD), or a high dose of 26.44 mg/kg PC (PC-HD), NR + PC-LD, and NR + PC-HF. The rats were given daily corticosterone injections (40 mg/kg) to induce stress conditions, or NR and PC were orally administered for 21 days. NR and PC supplementation, particularly NR plus PC, increased the serum antioxidant enzyme activities, hepatic nicotinamide adenine (NAD+) content, and telomere length (p < 0.001 for all) compared to the CS group. The levels of serum malondialdehyde (MDA), liver interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), IL-1β, and IL-8 were reduced under the CS condition (p < 0.001). In addition, CS decreased the levels of hepatic telomere-related proteins and sirtuins (SIRT1 and 3), whereas administration of NR and PC or their combination to CS-exposed rats increased the levels of telomere-related proteins (e.g., POT1b, TRF1 and TRF2), SIRT3 and NAMPT (p < 0.05). In conclusion, NR and PC, especially their combination, can alleviate metabolic abnormalities by enhancing hepatic cytokines, SIRT3, NAMPT, and NAD+ levels in CS-exposed rats. More research is needed to further elucidate the potential health effects of the combination of NR and PC in humans.
Collapse
Affiliation(s)
- Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey; (C.O.); (N.S.); (A.C.)
| | - Emre Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Bingol University, Bingol 12000, Turkey;
| | - Mehmet Tuzcu
- Department of Biology, Faculty of Science, Firat University, Elazig 23119, Turkey;
| | - Nurhan Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey; (C.O.); (N.S.); (A.C.)
| | - Abdullah Celik
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey; (C.O.); (N.S.); (A.C.)
| | - Sara Perez Ojalvo
- Research and Development, Nutrition 21, Harrison, NY 10577, USA; (S.P.O.); (S.S.); (J.R.K.)
| | - Sarah Sylla
- Research and Development, Nutrition 21, Harrison, NY 10577, USA; (S.P.O.); (S.S.); (J.R.K.)
| | - James R. Komorowski
- Research and Development, Nutrition 21, Harrison, NY 10577, USA; (S.P.O.); (S.S.); (J.R.K.)
| | - Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey; (C.O.); (N.S.); (A.C.)
| |
Collapse
|
4
|
Peka M, Balatsky V, Saienko A, Tsereniuk O. Bioinformatic analysis of the effect of SNPs in the pig TERT gene on the structural and functional characteristics of the enzyme to develop new genetic markers of productivity traits. BMC Genomics 2023; 24:487. [PMID: 37626279 PMCID: PMC10463782 DOI: 10.1186/s12864-023-09592-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Telomerase reverse transcriptase (TERT) plays a crucial role in synthesizing telomeric repeats that safeguard chromosomes from damage and fusion, thereby maintaining genome stability. Mutations in the TERT gene can lead to a deviation in gene expression, impaired enzyme activity, and, as a result, abnormal telomere shortening. Genetic markers of productivity traits in livestock can be developed based on the TERT gene polymorphism for use in marker-associated selection (MAS). In this study, a bioinformatic-based approach is proposed to evaluate the effect of missense single-nucleotide polymorphisms (SNPs) in the pig TERT gene on enzyme function and structure, with the prospect of developing genetic markers. RESULTS A comparative analysis of the coding and amino acid sequences of the pig TERT was performed with corresponding sequences of other species. The distribution of polymorphisms in the pig TERT gene, with respect to the enzyme's structural-functional domains, was established. A three-dimensional model of the pig TERT structure was obtained through homological modeling. The potential impact of each of the 23 missense SNPs in the pig TERT gene on telomerase function and stability was assessed using predictive bioinformatic tools utilizing data on the amino acid sequence and structure of pig TERT. CONCLUSIONS According to bioinformatic analysis of 23 missense SNPs of the pig TERT gene, a predictive effect of rs789641834 (TEN domain), rs706045634 (TEN domain), rs325294961 (TRBD domain) and rs705602819 (RTD domain) on the structural and functional parameters of the enzyme was established. These SNPs hold the potential to serve as genetic markers of productivity traits. Therefore, the possibility of their application in MAS should be further evaluated in associative analysis studies.
Collapse
Affiliation(s)
- Mykyta Peka
- Institute of Pig Breeding and Agroindustrial Production, National Academy of Agrarian Sciences of Ukraine, 1 Shvedska Mohyla St, Poltava, 36013 Ukraine
- V. N. Karazin Kharkiv National University, 4 Svobody Sq, Kharkiv, 61022 Ukraine
| | - Viktor Balatsky
- Institute of Pig Breeding and Agroindustrial Production, National Academy of Agrarian Sciences of Ukraine, 1 Shvedska Mohyla St, Poltava, 36013 Ukraine
- V. N. Karazin Kharkiv National University, 4 Svobody Sq, Kharkiv, 61022 Ukraine
| | - Artem Saienko
- Institute of Pig Breeding and Agroindustrial Production, National Academy of Agrarian Sciences of Ukraine, 1 Shvedska Mohyla St, Poltava, 36013 Ukraine
| | - Oleksandr Tsereniuk
- Institute of Pig Breeding and Agroindustrial Production, National Academy of Agrarian Sciences of Ukraine, 1 Shvedska Mohyla St, Poltava, 36013 Ukraine
| |
Collapse
|
5
|
Dietary Corn Silk ( Stigma maydis) Extract Supplementation Modulate Production Performance, Immune Response and Redox Balance in Corticosterone-Induced Oxidative Stress Broilers. Animals (Basel) 2023; 13:ani13030441. [PMID: 36766330 PMCID: PMC9913160 DOI: 10.3390/ani13030441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Immunosuppression is a serious consequence of oxidative stress exposure that negatively affects the productivity and profitability of birds, as well as their well-being. Thus, the present investigation was designed to evaluate the potential of corn silk extract (CSE) supplementation to overcome the negative impacts of oxidative stress induced by corticosterone administration (CORT) in broiler chickens. A total of 280 one day old Cobb 500 male chicks were divided into four groups in 2 × 2 factorial arrangements. The experimental groups included CSE supplementation (0 or 500 mg/kg diet, from 20 to 35 days of age) and CORT administration (0 or 25 mg/kg diet, from 22 to 35 days of age) as independent factors. At the end of week five of age, production performance parameters were measured. The humoral and cell-mediated immune response parameters, redox status, and stress markers were determined. Data revealed deleterious effects of CORT administration on the broilers' body weight, body weight gain, and feed conversion ratio. Moreover, an exponential increase in stress marker levels, in addition to immunosuppression and redox imbalance, were associated with CORT administration. However, CSE supplementation, with its high total phenols content, partially alleviated the negative impacts of CORT administration, as shown by a significant improvement in immune response parameters and antioxidant activity, as well as a reduction in stress marker levels. Furthermore, CSE supplementation to non-stressed birds even significantly improved total antioxidant activity, total white blood cells (TWBCs) count, T-lymphocyte stimulating index, and wattle thickness. It can be concluded that, under stress conditions in commercial broiler farms, dietary CSE supplementation can strongly be recommended to modulate the negative impacts of stress. Therefore, CSE can be used as an effective immunomodulator and antioxidant agent to increase commercial broiler farm productivity and profitability.
Collapse
|
6
|
Telomere Length, Apoptotic, and Inflammatory Genes: Novel Biomarkers of Gastrointestinal Tract Pathology and Meat Quality Traits in Chickens under Chronic Stress ( Gallus gallus domesticus). Animals (Basel) 2021; 11:ani11113276. [PMID: 34828008 PMCID: PMC8614256 DOI: 10.3390/ani11113276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/16/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The assessment of poultry’s gastrointestinal (GI) tract and meat quality traits are crucial for sustainable poultry production in the tropics. The search for well-conserved and more reliable biomarkers for the GI tract and meat traits has faced many challenges. In this study, we observed the effect of corticosterone (CORT) and age on body weight, buffy coat telomere length, GI tract, and meat quality traits. The critical evaluation of the GI tract and meat traits in this study revealed that telomere length, mitochondria, and acute phase protein genes were altered by chronic stress and were associated with the traits. This study informed us of the potential of telomere length, mitochondria, and acute phase protein genes in the assessment of GI tract pathological conditions and meat quality in the poultry sector for sustainable production. Abstract This study was designed to examine the potentials of telomere length, mitochondria, and acute phase protein genes as novel biomarkers of gastrointestinal (GI) tract pathologies and meat quality traits. Chickens were fed a diet containing corticosterone (CORT) for 4 weeks and records on body weight, telomere length, GI tract and muscle histopathological test, meat quality traits, mitochondria, and acute phase protein genes were obtained at weeks 4 and 6 of age. The body weight of CORT-fed chickens was significantly suppressed (p < 0.05). CORT significantly altered the GI tract and meat quality traits. The interaction effect of CORT and age on body weight, duodenum and ileum crypt depth, pH, and meat color was significant (p < 0.05). CORT significantly (p < 0.05) shortened buffy coat telomere length. UCP3 and COX6A1 were diversely and significantly expressed in the muscle, liver, and heart of the CORT-fed chicken. Significant expression of SAAL1 and CRP in the liver and hypothalamus of the CORT-fed chickens was observed at week 4 and 6. Therefore, telomere lengths, mitochondria, and acute phase protein genes could be used as novel biomarkers for GI tract pathologies and meat quality traits.
Collapse
|