1
|
Golshan M, Alavi SMH, Hatef A, Kazori N, Socha M, Milla S, Sokołowska-Mikołajczyk M, Unniappan S, Butts IAE, Linhart O. Impact of absolute food deprivation on the reproductive system in male goldfish exposed to sex steroids. J Comp Physiol B 2024; 194:411-426. [PMID: 38880793 DOI: 10.1007/s00360-024-01570-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/18/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024]
Abstract
There is a link between metabolism and reproduction as metabolic hormones affect hypothalamus-pituitary-testis (HPT) hormonal functions and vice versa. The aim of the present study was to investigate the effects of negative energy balance on the reproductive system in male goldfish exposed to testosterone (T) and 17β-estradiol (E2). Following 7 days of food deprivation (FD), ANOVA models showed significant FD × sex steroid interactions on sperm quality and circulating sex steroid levels. When FD effects were investigated, 11-ketotestosterone (11-KT) level and sperm motility and velocity decreased in food-deprived goldfish in the control group. In E2-exposed goldfish, FD decreased sperm production in addition to sperm motility and velocity that coincided with an elevation of circulating E2 level. However, FD did not significantly impact sex steroids and sperm quality in T-exposed goldfish. ANOVA models showed non-significant FD × sex steroid interactions for HSI, GSI, circulating luteinizing hormone (Lh) level, and metabolic (preproghrelin, goat and nucb2) and reproductive (kiss1, gpr54 and gnrh3) mRNAs. Furthermore, results showed that FD decreased HSI, and increased Lh levels and testicular preproghrelin and goat mRNAs, while sex steroids increased mid-brain nucb2, kiss1 and gpr54 mRNAs. Together, our results suggest that FD-induced inhibition of androgenesis resulted in diminished sperm quality associated with activation of the testicular ghrelinergic system, and negative feedback of 11-KT increased Lh level. The FD-induced testicular metabolic and hormonal system was impacted in goldfish exposed to sex steroids. However, the negative effects of FD on sperm quality were accelerated in E2-exposed goldfish due to estrogenic activity. This study provides novel information to better understand metabolic-associated reproductive disorders in fish.
Collapse
Affiliation(s)
- Mahdi Golshan
- Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization, Tehran, Iran
| | - Sayyed Mohammad Hadi Alavi
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic.
- School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Azadeh Hatef
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada
- Toxicology Centre, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B3, Canada
| | - Negar Kazori
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Magdalena Socha
- Faculty of Animal Science, University of Agriculture in Kraków, Kraków, Poland
| | - Sylvain Milla
- Research Unit Animal and Functionalities of Animal Products, INRA, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | | | - Suraj Unniappan
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - Ian A E Butts
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Otomar Linhart
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| |
Collapse
|
2
|
Martinand-Mari C, Debiais-Thibaud M, Potier E, Gasset E, Dutto G, Leurs N, Lallement S, Farcy E. Estradiol-17β and bisphenol A affect growth and mineralization in early life stages of seabass. Comp Biochem Physiol C Toxicol Pharmacol 2024; 281:109921. [PMID: 38609061 DOI: 10.1016/j.cbpc.2024.109921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/22/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
Natural and synthetic estrogens are contaminants present in aquatic ecosystems. They can have significant consequences on the estrogen-sensitive functions of organisms, including skeletal development and growth of vertebrate larvae. Synthetic polyphenols represent a group of environmental xenoestrogens capable of binding the receptors for the natural hormone estradiol-17β (E2). To better understand how (xeno-)estrogens can affect the skeleton in fish species with high ecological and commercial interest, 16 days post-hatch larvae of the seabass were experimentally exposed for 7 days to E2 and Bisphenol A (BPA), both used at the regulatory concentration of surface water quality (E2: 0.4 ng.L-1, BPA: 1.6 μg.L-1) or at a concentration 100 times higher. Skeletal mineralization levels were evaluated using Alizarin red staining, and expression of several genes playing key roles in growth, skeletogenesis and estrogen signaling pathways was assessed by qPCR. Our results show that E2 exerts an overall negative effect on skeletal mineralization at the environmental concentration of 0.4 ng.L-1, correlated with an increase in the expression of genes associated only with osteoblast bone cells. Both BPA exposures inhibited mineralization with less severe effects and modified bone homeostasis by regulating the expression of gene encoding osteoblasts and osteoclasts markers. Our results demonstrate that environmental E2 exposure inhibits larval growth and has an additional inhibitory effect on skeleton mineralization while both BPA exposures have marginal inhibitory effect on skeletal mineralization. All exposures have significant effects on transcriptional levels of genes involved in the skeletal development of seabass larvae.
Collapse
Affiliation(s)
- Camille Martinand-Mari
- Institut des Sciences de l'Evolution de Montpellier, ISEM, Univ. Montpellier, CNRS, IRD, France.
| | - Melanie Debiais-Thibaud
- Institut des Sciences de l'Evolution de Montpellier, ISEM, Univ. Montpellier, CNRS, IRD, France
| | - Eric Potier
- Marine Biodiversity, Exploitation and Conservation, MARBEC, Univ. Montpellier, Ifremer, CNRS, IRD, France
| | - Eric Gasset
- Marine Biodiversity, Exploitation and Conservation, MARBEC, Univ. Montpellier, Ifremer, CNRS, IRD, France
| | - Gilbert Dutto
- Marine Biodiversity, Exploitation and Conservation, MARBEC, Univ. Montpellier, Ifremer, CNRS, IRD, France
| | - Nicolas Leurs
- Institut des Sciences de l'Evolution de Montpellier, ISEM, Univ. Montpellier, CNRS, IRD, France
| | - Stéphane Lallement
- Marine Biodiversity, Exploitation and Conservation, MARBEC, Univ. Montpellier, Ifremer, CNRS, IRD, France
| | - Emilie Farcy
- Marine Biodiversity, Exploitation and Conservation, MARBEC, Univ. Montpellier, Ifremer, CNRS, IRD, France.
| |
Collapse
|
3
|
Han Y, Liu Z, Lu L, Wang B, Li W, Yuan X, Ding J, Zhang H, Liu J. Tetrabromobisphenol A reduces male rats reproductive organ coefficients and disrupting sexual hormone by causing oxidative stress. Toxicology 2024; 505:153837. [PMID: 38763426 DOI: 10.1016/j.tox.2024.153837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Tetrabromobisphenol A (TBBPA) has become a topic of public attention due to its pervasive detection in the environment and organisms in recent decades. However, limited information is available regarding the toxicity of TBBPA on reproductive ability of male mammals. Herein, the reproductive toxicity of TBBPA was investigated in male rats to fill the knowledge gap. In this study, male rats were exposed to TBBPA (0, 10, 100, and 1000 mg/kg) for 6 weeks. Subsequently, body and organ indexes, histopathological evaluation of testis and epididymis, ultrastructural observation of sperm, testosterone and progesterone levels, and oxidative stress indicators were conducted to reveal corresponding mechanisms. Results obtained showed that compare to the control group, the body weight, testes weight, epididymis weight, seminal vesicle and coagulation glands weight of rats in the 1000 mg/kg group lost 8.30%, 16.84%, 20.16%, 19.72% and 26.42%, respectively. Intriguingly, exposure to TBBPA (10, 100, 100 mg/kg) resulted in substantial pathological damage in testis, epididymis and sperm. TBBPA exposure also increased malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents, as well as superoxide dismutase (T-SOD) and catalase (CAT) activities in testicular tissue. What's more, the testosterone and progesterone levels in male rat serum were significantly decreased after exposure to TBBPA for 6 weeks. Meanwhile, results of molecular docking showed that TBBPA has a strong affinity with estrogen receptors (ERs). These findings demonstrated that TBBPA exposure negatively impacts the reproductive ability of male rats, thus providing new insights for risk assessment for reproductive health under TBBPA exposure.
Collapse
Affiliation(s)
- Yu Han
- School of Life Sciences, Central South University, Changsha 410083, China; School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhiquan Liu
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Liping Lu
- School of Public Health Hangzhou Normal University, Hangzhou 311121, China
| | - Binhao Wang
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Wenbing Li
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Xia Yuan
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiafeng Ding
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Hangjun Zhang
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Jing Liu
- School of Life Sciences, Central South University, Changsha 410083, China; Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China.
| |
Collapse
|
4
|
Hilia SWR, Abinawanto, Dwiranti A, Bowolaksono A, Lestari R, Fadhilah, Kristanto AH, Ohmido N. Ultrastructure of Javaen barb fish Systomus orphoides Valenciennes, 1842 spermatozoa (Cypriniformes: Cyprinidae) by electron microscopes. Microsc Res Tech 2023; 86:1411-1415. [PMID: 37158224 DOI: 10.1002/jemt.24341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/24/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
Javaen barb fish Systomus orphoides Valenciennes, 1842 (Cypriniformes: Cyprinidae) is a freshwater fish whose population is declining and threatened with extinction. In this study, the ultrastructure of spermatozoa of Javaen barb fish (S. orphoides) was studied using transmission and scanning electron microscopy. The spermatozoa of S. orphoides are relatively simple cells composed of a spherical head, a short midpiece, and a flagellum, as in most Cyprinidae. The ultrastructure is characterized by the absence of acrosome, the total length of spermatozoa is 27.16 ± 4.5 μm, and the head has spherical with a length of 1.84 ± 0.10 μm and width of 1.55 ± 0.15 μm containing a nucleus, midpiece region containing the proximal and distal centrioles and mitochondria. Two or three mitochondria surrounding the axoneme (with a 9 + 2 microtubular pattern). Ultrastructural analyses by SEM and TEM of Javaen barb fish spermatozoa cells are very consistent with those of Cyprinidae. This study provides the ultrastructure information of S. orphoides spermatozoa in the Cyprinidae family this research could be useful in increasing reproductive efficiency and further prevent the extinction of this species.
Collapse
Affiliation(s)
- Sri Widiyanti Rahayu Hilia
- Cellular and Molecular Mechanisms in Biological System Research Group, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok Campus, Depok, Indonesia
| | - Abinawanto
- Cellular and Molecular Mechanisms in Biological System Research Group, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok Campus, Depok, Indonesia
| | - Astari Dwiranti
- Cellular and Molecular Mechanisms in Biological System Research Group, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok Campus, Depok, Indonesia
| | - Anom Bowolaksono
- Cellular and Molecular Mechanisms in Biological System Research Group, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok Campus, Depok, Indonesia
| | - Retno Lestari
- Cellular and Molecular Mechanisms in Biological System Research Group, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok Campus, Depok, Indonesia
| | - Fadhilah
- Cellular and Molecular Mechanisms in Biological System Research Group, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok Campus, Depok, Indonesia
| | - Anang Hari Kristanto
- Applied Zoology Research Center, Biological and Environmental Research Organization, National Research and Innovation Agency, Cibinong, Km 46, West Java, Indonesia
| | - Nobuko Ohmido
- Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| |
Collapse
|
5
|
Declines in Reproductive Condition of Male Largemouth Bass ( Micropterus salmoides) Following Seasonal Exposure to Estrogenic Endocrine-Disrupting Compounds. Int J Mol Sci 2022; 23:ijms232416131. [PMID: 36555769 PMCID: PMC9785829 DOI: 10.3390/ijms232416131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Reproductive abnormalities, that could lead to possible effects at the population level, have been observed in wild fish throughout the United States, with high prevalence in largemouth bass (LMB; Micropterus salmoides) and smallmouth bass (Micropterus dolomieu). Estrone (E1) and atrazine (ATR) are common environmental contaminants often associated with agricultural land use. 17alpha-ethinylestradiol (EE2) is a contaminant associated with wastewater treatment effluent, and a representative, well-studied estrogen commonly used for fish toxicity testing. Our objective was to assess whether early gonad recrudescence in adult fish was a period of sensitivity for alterations in reproductive condition and function. Adult male LMB were exposed from post-spawning to early gonad recrudescence to either a mixture of E1 (47.9 ng/L) + ATR (5.4 µg/L), or EE2 (2.4 ng/L) in outdoor experimental ponds. Gonad samples were collected from fish just prior to the start of exposure (July), at the end of the exposure period (December), the following spring just prior to spawning (April), and post spawning (May). Gonadosomatic index (GSI) was significantly reduced in E1 + ATR-exposed and EE2-exposed males compared to control at every post-exposure time point. Reduced sperm count and sperm motility were observed in the mixture treatment (E1 + ATR) compared to the control. Sperm motility was also reduced in the EE2 treatment. These data together indicate that estrogenic endocrine-disrupting compounds can lessen the reproductive condition of adult male LMB, and that effects of exposure during early gonad recrudescence can persist at least through the subsequent spawning cycle.
Collapse
|
6
|
Golshan M, Hatef A, Kazori N, Socha M, Sokołowska-Mikołajczyk M, Habibi HR, Linhart O, Alavi SMH. A chronic exposure to bisphenol A reduces sperm quality in goldfish associated with increases in kiss2, gpr54, and gnrh3 mRNA and circulatory LH levels at environmentally relevant concentrations. Comp Biochem Physiol C Toxicol Pharmacol 2022; 257:109342. [PMID: 35417786 DOI: 10.1016/j.cbpc.2022.109342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022]
Abstract
The bisphenol A (BPA)-disrupted reproductive functions have been demonstrated in male animals. In fish, it has been shown that environmentally relevant concentrations of BPA decrease sperm quality associated with inhibition of androgen biosynthesis. However, BPA effects on neuroendocrine regulation of reproduction to affect testicular functions are largely unknown. In the present study, reproductive functions of hypothalamus and pituitary were studied in mature male goldfish exposed to nominal 0.2, 2.0 and 20.0 μg/L BPA. At 90 d of exposure, sperm volume, velocity, and density and motility were decreased in goldfish exposed to 0.2, 2.0, and 20.0 μg/L BPA, respectively (p < 0.05). At 30 d of exposure, there were no significant changes in circulatory LH levels and mRNA transcripts of kiss1, Kiss2, gpr54, and gnrh3. At 90 d of exposure, circulatory LH levels showed trends toward increases in BPA exposed goldfish, which was significant in those exposed to 2.0 μg/L (P < 0.05). At this time, Kiss2, gpr54, and gnrh3 mRNA levels were increased in goldfish exposed to any concentrations of BPA (p < 0.05). This study shows that BPA-diminished sperm quality was accompanied by an increase in circulatory LH levels associated with increases in mRNA transcripts of upstream neuroendocrine regulators of reproduction in goldfish. Further, this is the first study to report circulatory levels of LH in fish exposed to BPA.
Collapse
Affiliation(s)
- Mahdi Golshan
- Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization, 133-15745 Tehran, Iran
| | - Azadeh Hatef
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Negar Kazori
- School of Biology, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Magdalena Socha
- Faculty of Animal Sciences, University of Agriculture in Kraków, Kraków 30-059, Poland
| | | | - Hamid R Habibi
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Otomar Linhart
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany 389 25, Czech Republic
| | | |
Collapse
|