1
|
Wang S, Chen D, Ji X, Shen Q, Yu Y, Wu P, Tang G. Multi-omics unveils tryptophan metabolic pathway as a key pathway influencing residual feed intake in Duroc swine. Front Vet Sci 2024; 11:1403493. [PMID: 38868499 PMCID: PMC11168206 DOI: 10.3389/fvets.2024.1403493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/26/2024] [Indexed: 06/14/2024] Open
Abstract
The genetic trait of residual feed intake (RFI) holds considerable importance in the swine industry. Recent research indicates that the gut microbiota of pigs plays a pivotal role in the manifestation of the RFI trait. Nevertheless, the metabolic pathways involved in the functioning of these microorganisms remain elusive. Thus, based on the ranking of the RFI trait in Duroc pigs, the present study selected the top 10 and bottom 10 pigs as the experimental subjects. The distribution and metabolite differences of cecal microbiota were analyzed using 16S rRNA gene sequencing and liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques. The low RFI cecal group was named LRC, and the high RFI cecal group was named HRC. The results indicate that the LRC group had lower RFI, feed conversion ratio (FCR), average daily feed intake (ADFI) (p < 0.001), and thinner backfat (p < 0.05) compared with the HRC group. We simultaneously recorded the foraging behavior as well, the LRC group had a significant increase in total time spent at the feeder per day (TPD) (p < 0.05) and a significant increase in average feed intake per mins (AFI) and the number of visits to the feeder per day (NVD) compared to the HRC group (p < 0.001). Clostridium_XVIII, Bulleidia, and Intestinimonas were significantly enriched in the LRC group (p < 0.01), while Sutterella, Fusobacterium, and Bacteroides were significantly increased in the HRC group (p < 0.01). In the metabolome, we detected 390 (248 metabolites up and 142 down in the LRC compared with HRC), and 200 (97 metabolites up and 103 down in the LRC compared with HRC) differential metabolites in positive and negative ionization modes. The comprehensive analysis found that in the LRC group, Escherichia and Eubacterium in the gut may increase serotonin content, respectively. Bacteroides may deplete serotonin. We suggest that the RFI may be partly achieved through tryptophan metabolism in gut microbes. In individuals with low RFI, gut microbes may enhance feed efficiency by enhancing host synthesis and metabolism of tryptophan-related metabolites.
Collapse
Affiliation(s)
- Shujie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Dong Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Xiang Ji
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Qi Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Yang Yu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| | - Pingxian Wu
- National Center of Technology Innovation for Pigs, Rongchang, Chongqing, China
- Chongqing Academy of Animal Sciences, Rongchang, Chongqing, China
| | - Guoqing Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Bae SH, Lee MH, Lee JH, Yu Y, Lee J, Kim TH. The Genome of the Korean Island-Originated Perilla citriodora 'Jeju17' Sheds Light on Its Environmental Adaptation and Fatty Acid and Lipid Production Pathways. Genes (Basel) 2023; 14:1898. [PMID: 37895247 PMCID: PMC10606934 DOI: 10.3390/genes14101898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Perilla is a key component of Korean food. It contains several plant-specialized metabolites that provide medical benefits. In response to an increased interest in healthy supplement food from the public, people are focusing on the properties of Perilla. Nevertheless, unlike rice and soybeans, there are few studies based on molecular genetics on Perilla, so it is difficult to systematically study the molecular breed. The wild Perilla, Perilla citriodora 'Jeju17', was identified a decade ago on the Korean island of Jeju. Using short-reads, long-reads, and Hi-C, a chromosome-scale genome spanning 676 Mbp, with high contiguity, was assembled. Aligning the 'Jeju17' genome to the 'PC002' Chinese species revealed significant collinearity with respect to the total length. A total of 31,769 coding sequences were predicted, among which 3331 were 'Jeju17'-specific. Gene enrichment of the species-specific gene repertoire highlighted environment adaptation, fatty acid metabolism, and plant-specialized metabolite biosynthesis. Using a homology-based approach, genes involved in fatty acid and lipid triacylglycerol biosynthesis were identified. A total of 22 fatty acid desaturases were found and comprehensively characterized. Expression of the FAD genes in 'Jeju17' was examined at the seed level, and hormone signaling factors were identified. The results showed that the expression of FAD genes in 'Jeju17' at the seed level was high 25 days after flowering, and their responses of hormones and stress were mainly associated with hormone signal transduction and abiotic stress via cis-elements patterns. This study presents a chromosome-level genome assembly of P. citriodora 'Jeju17', the first wild Perilla to be sequenced from the Korean island of Jeju. The analyses provided can be useful in designing ALA-enhanced Perilla genotypes in the future.
Collapse
Affiliation(s)
- Seon-Hwa Bae
- Genomics Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea;
| | - Myoung Hee Lee
- Upland Crop Breeding Research Division, Department of Southern Area Crop Science, Rural Development Administration (RDA), Miryang 50424, Republic of Korea;
| | - Jeong-Hee Lee
- SEEDERS Inc., 118, Jungang-ro, Jung-gu, Daejeon 34912, Republic of Korea;
| | - Yeisoo Yu
- DNACARE Co., Ltd., 48, Teheran-ro 25-gil, Gangnam-gu, Seoul 06126, Republic of Korea;
| | - Jundae Lee
- Department of Horticulture, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Tae-Ho Kim
- Genomics Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea;
| |
Collapse
|
3
|
Promwee A, Chinarak K, Panpipat W, Panya A, Phonsatta N, Harcet M, Chaijan M. Balancing the Growth Performance and Nutritional Value of Edible Farm-Raised Sago Palm Weevil ( Rhynchophorus ferregineus) Larvae by Feeding Various Plant Supplemented-Sago Palm Trunk Diets. Foods 2023; 12:3474. [PMID: 37761183 PMCID: PMC10529308 DOI: 10.3390/foods12183474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Herein, the effect of supplementing ground sago palm trunk (GSPT) with varying concentrations of plant-based ingredients (PIs), including rice bran (RB), soybean meal (SM), and perilla seed (PS), on the nutritional profile of sago palm weevil larvae (SPWL) was investigated. Increased PS intake induced an increase in α-linolenic acid level and a reduction in the n-6/n-3 ratio in SPWL (p < 0.05). The presence of fatty acids in SPWL was determined predominantly by the fatty acid profile in the feed. The activities of Δ5 + Δ6 desaturases and thioesterase were not different among SPWL fed different diets (p < 0.05); however, PI intake resulted in low suppression of fads2 gene expression. RB, SM, and PS at the appropriate concentrations of 17.5%, 8.8%, and 7.0% in GSPT (F3 diet), respectively, boosted both protein quantity and quality of SPWL, as indicated by higher levels of essential amino acids, particularly lysine, than the FAO protein reference. Therefore, incorporating PIs into a regular diet is a viable method for enhancing the nutritional value and sustainability of farm-raised SPWL as a potential alternative source of high-quality lipid and protein.
Collapse
Affiliation(s)
- Athakorn Promwee
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand; (A.P.); (K.C.); (M.C.)
| | - Khanittha Chinarak
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand; (A.P.); (K.C.); (M.C.)
| | - Worawan Panpipat
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand; (A.P.); (K.C.); (M.C.)
| | - Atikorn Panya
- Food Biotechnology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (A.P.); (N.P.)
| | - Natthaporn Phonsatta
- Food Biotechnology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (A.P.); (N.P.)
| | - Matija Harcet
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia;
| | - Manat Chaijan
- Food Technology and Innovation Research Center of Excellence, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand; (A.P.); (K.C.); (M.C.)
| |
Collapse
|
4
|
The effect of dietary supplementation with guar ( Cyamopsis tetragonoloba) meal protein on the quality and chemical composition of pig carcasses. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2023-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Abstract
Recent research efforts have focused on replacing expensive imported genetically modified soybean meal (GM SBM) as a protein source in animal diets with guar meal characterized by similar nutritional characteristics, which could improve meat quality. The aim of this study was to determine the effect of guar meal protein fed to pigs on carcass quality and the content of major nutrients and fatty acids in the longissimus lumborum (LL) muscle. Pigs were divided into four groups. Control group (1) animals were fed diets containing SBM as the main protein source. In diets for experimental groups 2, 3 and 4, SBM protein was replaced with guar meal protein in 25%, 50% and 75%, respectively. It was found that SBM replacement with guar meal protein at 25% affected carcass weight and the lean content, fat content and protein content of the LL muscle. An analysis of linear correlations revealed a strong negative correlation between the concentrations of monounsaturated fatty acids (MUFAs) and saturated fatty acids (SFAs) in the LL muscle of pigs fed diets containing 25% of guar meal protein, which is nutritionally desirable. The results of this study suggest that the dietary inclusion of guar meal protein at up to 25% of SBM protein has no negative effects on the fattening performance of pigs. Meat quality was not affected by diets fortified with guar meal protein.
Collapse
|
5
|
Wang F, Yin Y, Wang Q, Xie J, Fu C, Guo H, Chen J, Yin Y. Effects of dietary β-alanine supplementation on growth performance, meat quality, carnosine content, amino acid composition and muscular antioxidant capacity in Chinese indigenous Ningxiang pig. J Anim Physiol Anim Nutr (Berl) 2022; 107:878-886. [PMID: 36575591 DOI: 10.1111/jpn.13797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/21/2022] [Accepted: 12/06/2022] [Indexed: 12/29/2022]
Abstract
β-alanine has been demonstrated to improve carcass traits and meat quality of animals. However, no research has been found on the effects of dietary β-alanine in the meat quality control of finishing pigs, which are among the research focus. Therefore, this study aimed to evaluate the effects of dietary β-alanine supplementation on growth performance, meat quality, carnosine content, amino acid composition and muscular antioxidant capacity of Chinese indigenous Ningxiang pigs. The treatments contained a basal diet (control, CON) and a basal diet supplemented with 600 mg/kg β-alanine. Each treatment group consisted of five pens, with five pigs per pen. Results showed that compared with CON, supplemental β-alanine did not affect the final body weight, average daily gain, average daily feed intake and the feed-to-gain ratio of pigs. Dietary β-alanine supplementation tended to increase the pH45 min (p = 0.071) while decreasing the shear force (p = 0.085) and the drip loss (p = 0.091). Moreover, it improved (p < 0.05) the activities of glutathione peroxidase and catalase and lessened (p < 0.05) malondialdehyde concentration. Added β-alanine in diets of finishing pigs could enhance the concentrations of arginine, alanine, and glutamate (p < 0.05) in the longissimus dorsi muscle and tended to raise the levels of cysteine, glycine and anserine (p = 0.060, p = 0.098 and p = 0.091 respectively). Taken together, our results showed that dietary β-alanine supplementation contributed to the improvement of the carcass traits, meat quality and anserine content, the amelioration of muscle antioxidant capacity and the regulation of amino acid composition in Chinese indigenous Ningxiang pigs.
Collapse
Affiliation(s)
- Fang Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Yexin Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Qiye Wang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Junyan Xie
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Chenxing Fu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Henghua Guo
- Anhui Huaheng Biotechnology, Hefei, Anhui, China
| | - Jiashun Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Yulong Yin
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China.,Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| |
Collapse
|
6
|
Sringarm K, Chaiwang N, Wattanakul W, Mahinchai P, Satsook A, Norkeaw R, Seel-audom M, Moonmanee T, Mekchay S, Sommano SR, Ruksiriwanich W, Rachtanapun P, Jantanasakulwong K, Arjin C. Improvement of Intramuscular Fat in longissimus Muscle of Finishing Thai Crossbred Black Pigs by Perilla Cake Supplementation in a Low-Lysine Diet. Foods 2022; 11:907. [PMID: 35406994 PMCID: PMC8997464 DOI: 10.3390/foods11070907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 11/16/2022] Open
Abstract
This study was conducted to find out the effects of perilla cake (PC) supplementation in a low-lysine diet on Thai crossbred finishing pigs’ productivity, carcass and meat quality, and fatty acid composition. For six weeks, a total of 21 barrows of finishing pigs were fed with three dietary treatments (T1: basal diet, T2: 2.5 percent PC supplementation in a low-lysine diet, and T3: 4.5 percent PC supplementation in a low-lysine diet). The results show that the intramuscular fat and marbling score was significantly increased by T2 and T3. On the other hand, it was found that the boiling loss and shear force value were significantly decreased by T2 and T3 (p < 0.05). In a low-lysine diet, dietary PC supplementation caused a significant increase in malondialdehyde levels in meat (p < 0.05) compared with the basal diet. It was also shown that alpha-linolenic acid level in backfat and the longissimus thoracis et lumborum muscle was increased considerably by T2 and T3. Therefore, supplementing PC in a low-lysine diet may be an alternative strategy for improving the meat quality of late-phase pigs.
Collapse
Affiliation(s)
- Korawan Sringarm
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (A.S.); (R.N.); (M.S.-a.); (T.M.); (S.M.)
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand; (S.R.S.); (W.R.)
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50200, Thailand; (P.R.); (K.J.)
| | - Niraporn Chaiwang
- Department of Agricultural Technology and Development, Faculty of Agricultural Technology, Chiang Mai Rajabhat University, Chiang Mai 50300, Thailand; (N.C.); (W.W.)
| | - Watcharapong Wattanakul
- Department of Agricultural Technology and Development, Faculty of Agricultural Technology, Chiang Mai Rajabhat University, Chiang Mai 50300, Thailand; (N.C.); (W.W.)
| | - Prapas Mahinchai
- Chiang Mai Livestock Research and Breeding Center, Department of Livestock Development, Chiang Mai 50120, Thailand;
| | - Apinya Satsook
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (A.S.); (R.N.); (M.S.-a.); (T.M.); (S.M.)
| | - Rakkiat Norkeaw
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (A.S.); (R.N.); (M.S.-a.); (T.M.); (S.M.)
| | - Mintra Seel-audom
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (A.S.); (R.N.); (M.S.-a.); (T.M.); (S.M.)
| | - Tossapol Moonmanee
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (A.S.); (R.N.); (M.S.-a.); (T.M.); (S.M.)
| | - Supamit Mekchay
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (A.S.); (R.N.); (M.S.-a.); (T.M.); (S.M.)
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand; (S.R.S.); (W.R.)
| | - Sarana Rose Sommano
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand; (S.R.S.); (W.R.)
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50200, Thailand; (P.R.); (K.J.)
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Warintorn Ruksiriwanich
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand; (S.R.S.); (W.R.)
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50200, Thailand; (P.R.); (K.J.)
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornchai Rachtanapun
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50200, Thailand; (P.R.); (K.J.)
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Kittisak Jantanasakulwong
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50200, Thailand; (P.R.); (K.J.)
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Chaiwat Arjin
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (A.S.); (R.N.); (M.S.-a.); (T.M.); (S.M.)
| |
Collapse
|
7
|
Wisetkomolmat J, Arjin C, Satsook A, Seel-audom M, Ruksiriwanich W, Prom-u-Thai C, Sringarm K. Comparative Analysis of Nutritional Components and Phytochemical Attributes of Selected Thai Rice Bran. Front Nutr 2022; 9:833730. [PMID: 35284435 PMCID: PMC8907980 DOI: 10.3389/fnut.2022.833730] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/31/2022] [Indexed: 12/15/2022] Open
Abstract
It is important to raise awareness regarding rice's nutritional quality and health benefits in terms of enhancing rice consumption in people's daily diets. This study evaluated the proximate components and phytochemical profiles of 11 Thai rice bran varieties, 4 non-colored rice brans and 7 colored rice brans, collected from the same agricultural fields. The chemical composition (ash, fat, proteins, fiber, and gross energy) was determined using proximate analysis methods. High-performance liquid chromatography was used to analyze the γ-oryzanol, tocopherols, and anthocyanins, while gas chromatography mass spectrometry determined the free fatty compounds. The phenolic profile was determined using liquid chromatography-mass spectrometry. The results showed great variations in each parameter of the nutritional and bioactive components among different rice bran varieties. Statistical analysis was also performed correlating the results obtained from PCA to categorize the samples by their nutritional characteristics into three main groups: group A with a high content of protein and fiber, group B with a high content of fat and gross energy, and group C with low fat and energy values but high amounts of functional, active components, particularly γ-oryzanol. Anthocyanins were detected in only one sample of colored rice bran. The major free fatty acids found in rice bran samples were oleic, linoleic, and palmitic acids. Systematic assessment of the concentration of these compounds gained from this study would be helpful to the industrial sector for selecting phytochemical-rich varieties as a value-added component in nutritional products.
Collapse
Affiliation(s)
- Jiratchaya Wisetkomolmat
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Chaiwat Arjin
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Apinya Satsook
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Mintra Seel-audom
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Warintorn Ruksiriwanich
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- Lanna Rice Research Center, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai, Thailand
| | - Chanakan Prom-u-Thai
- Lanna Rice Research Center, Chiang Mai University, Chiang Mai, Thailand
- Division of Agronomy, Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Chanakan Prom-u-Thai
| | - Korawan Sringarm
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai, Thailand
- *Correspondence: Korawan Sringarm
| |
Collapse
|