1
|
Guerra-Gomes M, Ferreira-Baptista C, Barros J, Alves-Pimenta S, Gomes P, Colaço B. Exploring the Potential of Non-Cellular Orthobiologic Products in Regenerative Therapies for Stifle Joint Diseases in Companion Animals. Animals (Basel) 2025; 15:589. [PMID: 40003071 PMCID: PMC11851989 DOI: 10.3390/ani15040589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Stifle joint diseases present a significant challenge in companion animals that often lead to hind limb lameness, with osteoarthritis being a prevalent degenerative condition causing pain and reduced mobility. Regenerative medicine offers a promising avenue for improving treatment outcomes, with a range of emerging therapies showing potential to alleviate symptoms and promote joint health. Among these, hyaluronic acid and platelet-rich plasma have been widely used as intra-articular treatments to enhance joint lubrication, reduce inflammation, and provide symptomatic relief. Interleukin-1 receptor antagonist protein, autologous conditioned serum, and autologous protein solution represent the next generation of regenerative therapies, offering more disease-modifying effects by inhibiting key mediators of joint inflammation. More recently, the MSC-derived secretome has emerged as an innovative, cell-free approach that leverages the diverse bioactive factors secreted by MSCs to support tissue repair and modulate inflammation. This review highlights the evidence base behind these non-cellular orthobiologic treatments for stifle joint disease, aiming to inform veterinary practitioners and owners about available options and their efficacy in supporting conventional treatments.
Collapse
Affiliation(s)
- Maria Guerra-Gomes
- i3S—Institute for Research and Innovation in Health, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.G.-G.); (J.B.)
- BoneLab, Faculdade de Medicina Dentária, Universidade do Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal; (C.F.-B.); (P.G.)
- CECAV—Veterinary and Animal Research Centre UTAD, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- LAQV/REQUIMTE, Faculdade de Medicina Dentária, Universidade do Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal
| | - Carla Ferreira-Baptista
- BoneLab, Faculdade de Medicina Dentária, Universidade do Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal; (C.F.-B.); (P.G.)
- LAQV/REQUIMTE, Faculdade de Medicina Dentária, Universidade do Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal
| | - Joana Barros
- i3S—Institute for Research and Innovation in Health, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.G.-G.); (J.B.)
| | - Sofia Alves-Pimenta
- CECAV—Veterinary and Animal Research Centre UTAD, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Pedro Gomes
- BoneLab, Faculdade de Medicina Dentária, Universidade do Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal; (C.F.-B.); (P.G.)
- LAQV/REQUIMTE, Faculdade de Medicina Dentária, Universidade do Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal
| | - Bruno Colaço
- CECAV—Veterinary and Animal Research Centre UTAD, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| |
Collapse
|
2
|
Ma H, Hao J, Li W, Yu K, Zhu K, Yang M, Cao S, Xue H, Liu D, Song Y, Zhang S, Zhang X, Sun Z, Gao X. Evaluation of feline mesenchymal stem cell susceptibility to feline viruses. Sci Rep 2024; 14:18598. [PMID: 39127765 PMCID: PMC11316800 DOI: 10.1038/s41598-024-69343-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024] Open
Abstract
Feline mesenchymal stem cells (fMSCs) are well known for their robust differentiation capabilities and are commonly used in studying immune-related diseases in cats. Despite their importance, the susceptibility of fMSCs to viral infections remains uncertain. This study aimed to assess the susceptibility of feline adipose-derived mesenchymal stem cells (fAD-MSCs) and feline umbilical cord-derived mesenchymal stem cells (fUC-MSCs) to common feline viruses, including feline coronavirus (FCoV), feline herpesvirus type 1 (FHV-1), and feline panleukopenia virus (FPV). The results demonstrated that both FCoV and FHV-1 were able to infect both types of cells, while FPV did not exhibit cytopathic effects on fUC-MSCs. Furthermore, all three viruses were successfully isolated from fAD-MSCs. These findings suggest that certain feline viruses can replicate in fMSCs, indicating potential limitations in using fMSCs for treating viral diseases caused by these specific viruses. This study has important clinical implications for veterinarians, particularly in the management of viral diseases.
Collapse
Affiliation(s)
- Haoyuan Ma
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji, 133002, China
| | - Jingrui Hao
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji, 133002, China
| | - Weijian Li
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji, 133002, China
| | - Kai Yu
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji, 133002, China
| | - Kunru Zhu
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji, 133002, China
| | - Meng Yang
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji, 133002, China
| | - Shuoning Cao
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji, 133002, China
| | - Haowen Xue
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji, 133002, China
| | - Dan Liu
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji, 133002, China
| | - Yanhao Song
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji, 133002, China
| | - Siqi Zhang
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji, 133002, China
| | - Xifeng Zhang
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji, 133002, China
| | - Zheng Sun
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji, 133002, China
| | - Xu Gao
- Laboratory for Animal Molecular Virology, Department of Veterinary Medicine, College of Agricultural, Yanbian University, Yanji, 133002, China.
| |
Collapse
|
3
|
Lanci A, Iacono E, Merlo B. Therapeutic Application of Extracellular Vesicles Derived from Mesenchymal Stem Cells in Domestic Animals. Animals (Basel) 2024; 14:2147. [PMID: 39123673 PMCID: PMC11310970 DOI: 10.3390/ani14152147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/12/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Recently, the therapeutic potential of extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) has been extensively studied in both human and veterinary medicine. EVs are nano-sized particles containing biological components commonly found in other biological materials. For that reason, EV isolation and characterization are critical to draw precise conclusions during their investigation. Research on EVs within veterinary medicine is still considered in its early phases, yet numerous papers were published in recent years. The conventional adult tissues for deriving MSCs include adipose tissue and bone marrow. Nonetheless, alternative sources such as synovial fluid, endometrium, gingiva, and milk have also been intermittently used. Fetal adnexa are amniotic membrane/fluid, umbilical cord and Wharton's jelly. Cells derived from fetal adnexa exhibit an intermediate state between embryonic and adult cells, demonstrating higher proliferative and differentiative potential and longer telomeres compared to cells from adult tissues. Summarized here are the principal and recent preclinical and clinical studies performed in domestic animals such as horse, cattle, dog and cat. To minimize the use of antibiotics and address the serious issue of antibiotic resistance as a public health concern, they will undoubtedly also be utilized in the future to treat infections in domestic animals. A number of concerns, including large-scale production with standardization of EV separation and characterization techniques, must be resolved for clinical application.
Collapse
Affiliation(s)
- Aliai Lanci
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sora 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (E.I.); (B.M.)
| | - Eleonora Iacono
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sora 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (E.I.); (B.M.)
- Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, 40100 Bologna, Italy
| | - Barbara Merlo
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sora 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (E.I.); (B.M.)
- Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, 40100 Bologna, Italy
| |
Collapse
|
4
|
McKune CM. Clinical Management and Pharmacologic Treatment of Pain. VETERINARY ANESTHESIA AND ANALGESIA 2024:1010-1022. [DOI: 10.1002/9781119830306.ch48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Saba E, Sandhu MA, Pelagalli A. Canine Mesenchymal Stromal Cell Exosomes: State-of-the-Art Characterization, Functional Analysis and Applications in Various Diseases. Vet Sci 2024; 11:187. [PMID: 38787159 PMCID: PMC11126113 DOI: 10.3390/vetsci11050187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Canine mesenchymal stromal cells (MSCs) possess the capacity to differentiate into a variety of cell types and secrete a wide range of bioactive molecules in the form of soluble and membrane-bound exosomes. Extracellular vesicles/exosomes are nano-sized vesicles that carry proteins, lipids, and nucleic acids and can modulate recipient cell response in various ways. The process of exosome formation is a physiological interaction between cells. With a significant increase in basic research over the last two decades, there has been a tremendous expansion in research in MSC exosomes and their potential applications in canine disease models. The characterization of exosomes has demonstrated considerable variations in terms of source, culture conditions of MSCs, and the inclusion of fetal bovine serum or platelet lysate in the cell cultures. Furthermore, the amalgamation of exosomes with various nano-materials has become a novel approach to the fabrication of nano-exosomes. The fabrication of exosomes necessitates the elimination of extrinsic proteins, thus enhancing their potential therapeutic uses in a variety of disease models, including spinal cord injury, osteoarthritis, and inflammatory bowel disease. This review summarizes current knowledge on the characteristics, biological functions, and clinical relevance of canine MSC exosomes and their potential use in human and canine research. As discussed, exosomes have the ability to control lethal vertebrate diseases by administration directly at the injury site or through specific drug delivery mechanisms.
Collapse
Affiliation(s)
- Evelyn Saba
- Department of Veterinary Biomedical Sciences, Faculty of Veterinary and Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan; (E.S.); (M.A.S.)
| | - Mansur Abdullah Sandhu
- Department of Veterinary Biomedical Sciences, Faculty of Veterinary and Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan; (E.S.); (M.A.S.)
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
- Institute of Biostructures and Bioimages, National Research Council, Via De Amicis 95, 80131 Naples, Italy
| |
Collapse
|
6
|
Velot É, Balmayor ER, Bertoni L, Chubinskaya S, Cicuttini F, de Girolamo L, Demoor M, Grigolo B, Jones E, Kon E, Lisignoli G, Murphy M, Noël D, Vinatier C, van Osch GJVM, Cucchiarini M. Women's contribution to stem cell research for osteoarthritis: an opinion paper. Front Cell Dev Biol 2023; 11:1209047. [PMID: 38174070 PMCID: PMC10762903 DOI: 10.3389/fcell.2023.1209047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/18/2023] [Indexed: 01/05/2024] Open
Affiliation(s)
- Émilie Velot
- Laboratory of Molecular Engineering and Articular Physiopathology (IMoPA), French National Centre for Scientific Research, University of Lorraine, Nancy, France
| | - Elizabeth R. Balmayor
- Experimental Orthopaedics and Trauma Surgery, Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, Aachen, Germany
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Lélia Bertoni
- CIRALE, USC 957, BPLC, École Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | | | - Flavia Cicuttini
- Musculoskeletal Unit, Monash University and Rheumatology, Alfred Hospital, Melbourne, VIC, Australia
| | - Laura de Girolamo
- IRCCS Ospedale Galeazzi - Sant'Ambrogio, Orthopaedic Biotechnology Laboratory, Milan, Italy
| | - Magali Demoor
- Normandie University, UNICAEN, BIOTARGEN, Caen, France
| | - Brunella Grigolo
- IRCCS Istituto Ortopedico Rizzoli, Laboratorio RAMSES, Bologna, Italy
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Leeds, United Kingdom
| | - Elizaveta Kon
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department ofBiomedical Sciences, Humanitas University, Milan, Italy
| | - Gina Lisignoli
- IRCCS Istituto Ortopedico Rizzoli, Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Bologna, Italy
| | - Mary Murphy
- Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
| | - Danièle Noël
- IRMB, University of Montpellier, Inserm, CHU Montpellier, Montpellier, France
| | - Claire Vinatier
- Nantes Université, Oniris, INSERM, Regenerative Medicine and Skeleton, Nantes, France
| | - Gerjo J. V. M. van Osch
- Department of Orthopaedics and Sports Medicine and Department of Otorhinolaryngology, Department of Biomechanical Engineering, University Medical Center Rotterdam, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, Netherlands
| | - Magali Cucchiarini
- Center of Experimental Orthopedics, Saarland University and Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
7
|
Merlo B, Iacono E. Beyond Canine Adipose Tissue-Derived Mesenchymal Stem/Stromal Cells Transplantation: An Update on Their Secretome Characterization and Applications. Animals (Basel) 2023; 13:3571. [PMID: 38003188 PMCID: PMC10668816 DOI: 10.3390/ani13223571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
A dog is a valuable animal model and concomitantly a pet for which advanced therapies are increasingly in demand. The characteristics of mesenchymal stem/stromal cells (MSCs) have made cell therapy more clinically attractive. During the last decade, research on the MSC therapeutic effectiveness has demonstrated that tissue regeneration is primarily mediated by paracrine factors, which are included under the name of secretome. Secretome is a mixture of soluble factors and a variety of extracellular vesicles. The use of secretome for therapeutic purposes could have some advantages compared to cell-based therapies, such as lower immunogenicity and easy manufacturing, manipulation, and storage. The conditioned medium and extracellular vesicles derived from MSCs have the potential to be employed as new treatments in veterinary medicine. This review provides an update on the state-of-the-art characterization and applications of canine adipose tissue-derived MSC secretome.
Collapse
Affiliation(s)
- Barbara Merlo
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy;
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, 40126 Bologna, Italy
| | - Eleonora Iacono
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy;
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
8
|
Caliani Carrera AL, Minto BW, Malard P, Brunel HDSS. The Role of Mesenchymal Stem Cell Secretome (Extracellular Microvesicles and Exosomes) in Animals' Musculoskeletal and Neurologic-Related Disorders. Vet Med Int 2023; 2023:8819506. [PMID: 38023428 PMCID: PMC10645499 DOI: 10.1155/2023/8819506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
The advances in regenerative medicine are very important for the development of medicine and the discovery of stem cells has shown a greater capacity to raise the level of therapeutic quality while their use becomes more accessible, especially in their mesenchymal form. In veterinary medicine, it is not different. The use of those cells, as well as recent advances related to the use of their extracellular vesicles, demonstrates a great opportunity to enhance therapeutic methods and ensure more life quality for patients, which can be in clinical or surgical treatments. Knowing the advances in these modalities and the growing clinical and surgery research and demands for innovations in orthopedic and neurology medicines, this paper aimed to review the literature about the methodologies of use and applications such as the pathways of action and the advances that were postulated for microvesicles and exosomes derived from mesenchymal stem cells in veterinary medicine, especially for musculoskeletal disorders and related injuries.
Collapse
Affiliation(s)
- Alefe Luiz Caliani Carrera
- Department of Clinical and Veterinary Surgery, São Paulo State University (UNESP), Av Paulo Donato Castelane s/n, Jaboticabal, São Paulo, Brazil
| | - Bruno Watanabe Minto
- Department of Clinical and Veterinary Surgery, São Paulo State University (UNESP), Av Paulo Donato Castelane s/n, Jaboticabal, São Paulo, Brazil
| | - Patrícia Malard
- Catholic University of Brasilia, Brasília, Federal District, Brazil
| | | |
Collapse
|
9
|
Giovannelli L, Bari E, Jommi C, Tartara F, Armocida D, Garbossa D, Cofano F, Torre ML, Segale L. Mesenchymal stem cell secretome and extracellular vesicles for neurodegenerative diseases: Risk-benefit profile and next steps for the market access. Bioact Mater 2023; 29:16-35. [PMID: 37456581 PMCID: PMC10338239 DOI: 10.1016/j.bioactmat.2023.06.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/01/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Neurodegenerative diseases represent a growing burden on healthcare systems worldwide. Mesenchymal stem cells (MSCs) have shown promise as a potential therapy due to their neuroregenerative, neuroprotective, and immunomodulatory properties, which are, however, linked to the bioactive substances they release, collectively known as secretome. This paper provides an overview of the most recent research on the safety and efficacy of MSC-derived secretome and extracellular vesicles (EVs) in clinical (if available) and preclinical models of Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, Huntington's disease, acute ischemic stroke, and spinal cord injury. The article explores the biologically active substances within MSC-secretome/EVs, the mechanisms responsible for the observed therapeutic effects, and the strategies that may be used to optimize MSC-secretome/EVs production based on specific therapeutic needs. The review concludes with a critical discussion of current clinical trials and a perspective on potential future directions in translating MSC-secretome and EVs into the clinic, specifically regarding how to address the challenges associated with their pharmaceutical manufacturing, including scalability, batch-to-batch consistency, adherence to Good Manufacturing Practices (GMP) guidelines, formulation, and storage, along with quality controls, access to the market and relative costs, value for money and impact on total expenditure.
Collapse
Affiliation(s)
- Lorella Giovannelli
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100, Novara, Italy
| | - Elia Bari
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100, Novara, Italy
| | - Claudio Jommi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100, Novara, Italy
| | | | - Daniele Armocida
- A.U.O, Policlinico Umberto I, Neurosurgery Division, Human Neurosciences Department, Sapienza University, 00135, Roma, Italy
| | - Diego Garbossa
- Department of Neuroscience Rita Levi Montalcini, Neurosurgery Unit, University of Turin, 10126, Turin, Italy
| | - Fabio Cofano
- Department of Neuroscience Rita Levi Montalcini, Neurosurgery Unit, University of Turin, 10126, Turin, Italy
| | - Maria Luisa Torre
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100, Novara, Italy
- PharmaExceed S.r.l, 27100, Pavia, Italy
| | - Lorena Segale
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, 28100, Novara, Italy
| |
Collapse
|
10
|
Dahl KH, Zebis MK, Vitger AD, Miles JE, Alkjær T. Non-invasive methods to assess muscle function in dogs: A scoping review. Front Vet Sci 2023; 10:1116854. [PMID: 36793378 PMCID: PMC9923109 DOI: 10.3389/fvets.2023.1116854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023] Open
Abstract
Skeletal muscle function can be affected by multiple disorders in dogs of which cranial cruciate ligament rupture or disease (CCLD) is one of the most common. Despite the significance of this condition only sparse research exists regarding assessment of muscle function in dogs. This scoping review aimed to identify the non-invasive methods for canine muscle function assessments that have been reported in the literature in the past 10 years. A systematic literature search was conducted 1st March 2022 across six databases. After screening, 139 studies were considered eligible for inclusion. Among the included studies, 18 different muscle function assessment categories were identified, and the most frequently reported disease state was CCLD. We included an attempt to elucidate the clinical applicability of the 18 reported methods, as experts were asked to subjectively assess the methods for their clinical relevance as well as their practical applicability in dogs with CCLD.
Collapse
Affiliation(s)
- Kathrine Højte Dahl
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Kreutzfeldt Zebis
- Department of Midwifery, Physiotherapy, Occupational Therapy and Psychomotor Therapy, University College Copenhagen, Copenhagen, Denmark
- Institute of Sports Medicine Copenhagen, Copenhagen University Hospital–Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Anne Désiré Vitger
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - James Edward Miles
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tine Alkjær
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Parker Institute, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
| |
Collapse
|
11
|
Sharun K, Muthu S, Mankuzhy PD, Pawde AM, Chandra V, Lorenzo JM, Dhama K, Sharma GT. Cell-free therapy for canine osteoarthritis: Current evidence and prospects. Vet Q 2022; 42:224-230. [PMID: 36336651 DOI: 10.1080/01652176.2022.2145620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Sathish Muthu
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
- Orthopaedic Research Group Coimbatore 641045, Tamil Nadu, India
- Department of Orthopedics, Government Medical College and Hospital, Dindigul, Tamil Nadu, 624304, India
| | - Pratheesh D. Mankuzhy
- Department of Physiology, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, Kerala, India
| | - Abhijit M. Pawde
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Vikash Chandra
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Universidade de Vigo, Área de Tecnoloxía dos Alimentos, Facultade de Ciencias de Ourense, 32004 Ourense, Spain
| | - Kuldeep Dhama
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - G. Taru Sharma
- National Institute of Animal Biotechnology, Hyderabad-500032, India
| |
Collapse
|
12
|
Williams KB, Ehrhart NP. Regenerative medicine 2.0: extracellular vesicle-based therapeutics for musculoskeletal tissue regeneration. J Am Vet Med Assoc 2022; 260:683-689. [PMID: 35263279 DOI: 10.2460/javma.22.02.0060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In recent years, extracellular vesicles (EVs) have emerged as prominent mediators of the homeostasis, repair, and regeneration of musculoskeletal tissues including bone, skeletal muscle, and cartilage. Accordingly, the therapeutic potential of EVs for regenerative medicine applications has not gone unnoticed. The use of EVs for the treatment of musculoskeletal injury and disease in veterinary species is a nascent but rapidly expanding area of research. Recent studies in this area have demonstrated the safety and feasibility of EV products in dogs and horses. While early clinical responses to EV-based therapeutics in companion animals have been favorable, more rigorously designed, sufficiently powered, and placebo-controlled clinical trials are required to fully elucidate the clinical benefits and best-use scenarios for EV therapeutics in veterinary medicine. Additionally, clinical translation of EV-based therapeutics will require Good Manufacturing Practice-compliant methods to scale up and purify EV products. Despite these challenges, EVs hold great promise in the regenerative medicine landscape, particularly in the treatment of musculoskeletal injury and disease in companion animals.
Collapse
|