1
|
Sun X, Zhang W, Li W, Yu N, Zhang D, Zou Q, Dong Q, Zhang X, Liu Z, Yuan Z, Gao R. SpaGRA: Graph augmentation facilitates domain identification for spatially resolved transcriptomics. J Genet Genomics 2025; 52:93-104. [PMID: 39362628 DOI: 10.1016/j.jgg.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/07/2024] [Accepted: 09/22/2024] [Indexed: 10/05/2024]
Abstract
Recent advances in spatially resolved transcriptomics (SRT) have provided new opportunities for characterizing spatial structures of various tissues. Graph-based geometric deep learning has gained widespread adoption for spatial domain identification tasks. Currently, most methods define adjacency relation between cells or spots by their spatial distance in SRT data, which overlooks key biological interactions like gene expression similarities, and leads to inaccuracies in spatial domain identification. To tackle this challenge, we propose a novel method, SpaGRA (https://github.com/sunxue-yy/SpaGRA), for automatic multi-relationship construction based on graph augmentation. SpaGRA uses spatial distance as prior knowledge and dynamically adjusts edge weights with multi-head graph attention networks (GATs). This helps SpaGRA to uncover diverse node relationships and enhance message passing in geometric contrastive learning. Additionally, SpaGRA uses these multi-view relationships to construct negative samples, addressing sampling bias posed by random selection. Experimental results show that SpaGRA presents superior domain identification performance on multiple datasets generated from different protocols. Using SpaGRA, we analyze the functional regions in the mouse hypothalamus, identify key genes related to heart development in mouse embryos, and observe cancer-associated fibroblasts enveloping cancer cells in the latest Visium HD data. Overall, SpaGRA can effectively characterize spatial structures across diverse SRT datasets.
Collapse
Affiliation(s)
- Xue Sun
- Center of Intelligent Medicine, School of Control Science and Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Wei Zhang
- Center of Intelligent Medicine, School of Control Science and Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Wenrui Li
- MOE Key Lab of Bioinformatics and Bioinformatics Division of BNRIST, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Na Yu
- Center of Intelligent Medicine, School of Control Science and Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Daoliang Zhang
- Center of Intelligent Medicine, School of Control Science and Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Qi Zou
- Center of Intelligent Medicine, School of Control Science and Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Qiongye Dong
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Xianglin Zhang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Zhiping Liu
- Center of Intelligent Medicine, School of Control Science and Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Zhiyuan Yuan
- Institute of Science and Technology for Brain-Inspired Intelligence, Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Fudan University, Shanghai 200433, China.
| | - Rui Gao
- Center of Intelligent Medicine, School of Control Science and Engineering, Shandong University, Jinan, Shandong 250061, China.
| |
Collapse
|
2
|
Yang P, Li X, Liu C, Han Y, E G, Huang Y. Role and Regulatory Mechanism of circRNA_14820 in the Proliferation and Differentiation of Goat Skeletal Muscle Satellite Cells. Int J Mol Sci 2024; 25:8900. [PMID: 39201586 PMCID: PMC11354305 DOI: 10.3390/ijms25168900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Skeletal muscle satellite cells (SMSCs), a type of myogenic stem cell, play a pivotal role in postnatal muscle regeneration and repair in animals. Circular RNAs (circRNAs) are a distinct class of non-coding RNA molecules capable of regulating muscle development by modulating gene expression, acting as microRNAs, or serving as protein decoys. In this study, we identified circ_14820, an exonic transcript derived from adenosine triphosphatase family protein 2 (ATAD2), through initial RNA-Seq analysis. Importantly, overexpression of circ_14820 markedly enhanced the proliferation of goat SMSCs while concomitantly suppressing their differentiation. Moreover, circ_14820 exhibited predominant localization in the cytoplasm of SMSCs. Subsequent small RNA and mRNA sequencing of circ_14820-overexpressing SMSCs systematically elucidated the molecular regulatory mechanisms associated with circ_14820. Our preliminary findings suggest that the circ_14820-miR-206-CCND2 regulatory axis may govern the development of goat SMSCs. These discoveries contribute to a deeper understanding of circRNA-mediated mechanisms in regulating skeletal muscle development, thereby advancing our knowledge of muscle biology.
Collapse
Affiliation(s)
| | | | | | | | | | - Yongfu Huang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (P.Y.); (X.L.); (C.L.); (Y.H.); (G.E.)
| |
Collapse
|
3
|
Song Y, Wei D, Raza SHA, Zhao Y, Jiang C, Song X, Wu H, Wang X, Luoreng Z, Ma Y. Research progress of intramuscular fat formation based on co-culture. Anim Biotechnol 2023; 34:3216-3236. [PMID: 36200856 DOI: 10.1080/10495398.2022.2127410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Intramuscular fat (IMF) is closely related to the meat quality of livestock and poultry. As a new cell culture technique in vitro, cell co-culture has been gradually applied to the related research of IMF formation because it can simulate the changes of microenvironment in vivo during the process of IMF cell formation. In the co-culture model, in addition to studying the effects of skeletal muscle cells on the proliferation and differentiation of IMF, we can also consider the role of many secretion factors in the formation of IMF, thus making the cell research in vitro closer to the real level in vivo. This paper reviewed the generation and origin of IMF, summarized the existing co-culture methods and systems, and discussed the advantages and disadvantages of each method as well as the challenges faced in the establishment of the system, with emphasis on the current status of research on the formation of IMF for human and animal based on co-culture technology.
Collapse
Affiliation(s)
- Yaping Song
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Dawei Wei
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | | | - Yiang Zhao
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Chao Jiang
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Xiaoyu Song
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Hao Wu
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Xingping Wang
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Zhuoma Luoreng
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| | - Yun Ma
- School of Agriculture, Ningxia University, Ningxia Yin Chuan, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia University, Ningxia Yinchuan, China
| |
Collapse
|
4
|
Tang J, Yang B, Song G, Zhang X, Wang Z, Mo Z, Zan L, Wang H. Effect of bovine myosin heavy chain 3 on proliferation and differentiation of myoblast. Anim Biotechnol 2023; 34:4337-4346. [PMID: 36441630 DOI: 10.1080/10495398.2022.2149549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The myosin heavy chain 3 (MYH3) gene is an essential gene that affects muscle development. This study aimed to discuss the expression characteristics of the MYH3 gene and its effect on the proliferation and differentiation of bovine myoblasts. Quantitative real time-PCR results display that the expression level of MYH3 was higher in muscle tissue, and the expression increased in the early stage of myoblast differentiation. Interfering with the MYH3 gene in myoblasts resulted in fewer EDU-positive cells and decreased expression of proliferation marker genes. Interference with MYH3 can also affect the differentiation process of myoblasts. Regarding phenotype, myotube differentiation in the interference group was slowed or even stopped. Interference with the expression of MYH3 could significantly reduce the expression of myogenic differentiation marker genes. The above results show that MYH3 is mainly expressed in muscle tissue and is highly expressed in the early stage of differentiation of bovine myoblasts, and interfering with the MYH3 can promote the proliferation and inhibit the differentiation of bovine myoblasts. This study provides a theoretical basis for revealing the regulatory process of bovine myoblast proliferation and differentiation and bovine molecular breeding.
Collapse
Affiliation(s)
- Jiayu Tang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bohua Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Guibing Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xinyi Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhicong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhaoyi Mo
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
- National Beef Cattle Improvement Center, Yangling, China
| | - Hongbao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
- National Beef Cattle Improvement Center, Yangling, China
| |
Collapse
|
5
|
Fuiten AM, Yoshimoto Y, Shukunami C, Stadler HS. Digits in a dish: An in vitro system to assess the molecular genetics of hand/foot development at single-cell resolution. Front Cell Dev Biol 2023; 11:1135025. [PMID: 36994104 PMCID: PMC10040768 DOI: 10.3389/fcell.2023.1135025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
In vitro models allow for the study of developmental processes outside of the embryo. To gain access to the cells mediating digit and joint development, we identified a unique property of undifferentiated mesenchyme isolated from the distal early autopod to autonomously re-assemble forming multiple autopod structures including: digits, interdigital tissues, joints, muscles and tendons. Single-cell transcriptomic analysis of these developing structures revealed distinct cell clusters that express canonical markers of distal limb development including: Col2a1, Col10a1, and Sp7 (phalanx formation), Thbs2 and Col1a1 (perichondrium), Gdf5, Wnt5a, and Jun (joint interzone), Aldh1a2 and Msx1 (interdigital tissues), Myod1 (muscle progenitors), Prg4 (articular perichondrium/articular cartilage), and Scx and Tnmd (tenocytes/tendons). Analysis of the gene expression patterns for these signature genes indicates that developmental timing and tissue-specific localization were also recapitulated in a manner similar to the initiation and maturation of the developing murine autopod. Finally, the in vitro digit system also recapitulates congenital malformations associated with genetic mutations as in vitro cultures of Hoxa13 mutant mesenchyme produced defects present in Hoxa13 mutant autopods including digit fusions, reduced phalangeal segment numbers, and poor mesenchymal condensation. These findings demonstrate the robustness of the in vitro digit system to recapitulate digit and joint development. As an in vitro model of murine digit and joint development, this innovative system will provide access to the developing limb tissues facilitating studies to discern how digit and articular joint formation is initiated and how undifferentiated mesenchyme is patterned to establish individual digit morphologies. The in vitro digit system also provides a platform to rapidly evaluate treatments aimed at stimulating the repair or regeneration of mammalian digits impacted by congenital malformation, injury, or disease.
Collapse
Affiliation(s)
- Allison M. Fuiten
- Research Center, Shriners Children’s, Portland, OR, United States
- Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, OR, United States
| | - Yuki Yoshimoto
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - H. Scott Stadler
- Research Center, Shriners Children’s, Portland, OR, United States
- Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, OR, United States
- *Correspondence: H. Scott Stadler,
| |
Collapse
|
6
|
Shi P, Ruan Y, Liu W, Sun J, Xu J, Xu H. Analysis of Promoter Methylation of the Bovine FOXO1 Gene and Its Effect on Proliferation and Differentiation of Myoblasts. Animals (Basel) 2023; 13:ani13020319. [PMID: 36670858 PMCID: PMC9854826 DOI: 10.3390/ani13020319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/01/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
This study aimed to explore the regulatory role of FOXO1 promoter methylation on its transcriptional level and unravel the effect of FOXO1 on the proliferation and differentiation of bovine myoblasts. Bisulfite sequencing polymerase chain reaction (BSP) and real-time quantitative PCR were performed to determine the methylation status and transcript levels of the FOXO1 promoter region at different growth stages. BSP results showed that the methylation level in the calf bovine (CB) group was significantly higher than that in the adult bovine (AB) group (p < 0.05). On the other hand, qRT-PCR results indicated that the mRNA expression level in the AB group was significantly higher than that in the CB group (p < 0.05), suggesting a significant decrease in gene expression at high levels of DNA methylation. CCK-8 and flow cytometry were applied to determine the effect of silencing the FOXO1 gene on the proliferation of bovine myoblasts. Furthermore, qRT-PCR and Western blot were conducted to analyze the expression of genes associated with the proliferation and differentiation of bovine myoblasts. Results from CCK-8 revealed that the short hairpin FOXO1 (shFOXO1) group significantly promoted the proliferation of myoblasts compared to the short-hairpin negative control (shNC) group (p < 0.05). Flow cytometry results showed a significant decrease in the number of the G1 phase cells (p < 0.05) and a significant increase in the number of the S phase cells (p < 0.05) in the shFOXO1 group compared to the shNC group. In addition, the expression of key genes for myoblast proliferation (CDK2, PCNA, and CCND1) and differentiation (MYOG, MYOD, and MYHC) was significantly increased at both mRNA and protein levels (p < 0.05). In summary, this study has demonstrated that FOXO1 transcription is regulated by methylation in the promoter region and that silencing FOXO1 promotes the proliferation and differentiation of bovine myoblasts. Overall, our findings lay the foundation for further studies on the regulatory role of epigenetics in the development of bovine myoblasts.
Collapse
Affiliation(s)
- Pengfei Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yong Ruan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Wenjiao Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Jinkui Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Jiali Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Correspondence:
| |
Collapse
|
7
|
Identification and Functional Prediction of Long Non-Coding RNA in Longissimus Dorsi Muscle of Queshan Black and Large White Pigs. Genes (Basel) 2023; 14:genes14010197. [PMID: 36672938 PMCID: PMC9858627 DOI: 10.3390/genes14010197] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Long non-coding RNA (lncRNA) participates in the regulation of various biological processes, but its function and characteristics in intramuscular fat (IMF) deposition in different breeds of pigs have not been fully understood. IMF content is one of the important factors affecting pork quality. In the present study, the differentially expressed lncRNAs (DE lncRNAs) and their target genes were screened by comparing Queshan Black (QS) and Large White (LW) pigs based on RNA-seq. The results displayed 55 DE lncRNAs between QS and LW, 29 upregulated and 26 downregulated, with 172 co-located target genes, and 6203 co-expressed target genes. The results of GO and KEGG analysis showed that the target genes of DE lncRNAs were involved in multiple pathways related to lipogenesis and lipid metabolism, such as the lipid biosynthetic process, protein phosphorylation, activation of MAPK activity, and the Jak-STAT signaling pathway. By constructing regulatory networks, lincRNA-ZFP42-ACTC1, lincRNA-AMY2-STAT1, and/or lincRNA-AMY2/miR-204/STAT1 were sieved, and the results indicate that lncRNA could participate in IMF deposition through direct regulation or ceRNA. These findings provide a basis for analyzing the molecular mechanism of IMF deposition in pigs and lay a foundation for developing and utilizing high-quality resources of local pig breeds.
Collapse
|
8
|
Knežić T, Janjušević L, Djisalov M, Yodmuang S, Gadjanski I. Using Vertebrate Stem and Progenitor Cells for Cellular Agriculture, State-of-the-Art, Challenges, and Future Perspectives. Biomolecules 2022; 12:699. [PMID: 35625626 PMCID: PMC9138761 DOI: 10.3390/biom12050699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/01/2022] [Accepted: 05/07/2022] [Indexed: 12/19/2022] Open
Abstract
Global food systems are under significant pressure to provide enough food, particularly protein-rich foods whose demand is on the rise in times of crisis and inflation, as presently existing due to post-COVID-19 pandemic effects and ongoing conflict in Ukraine and resulting in looming food insecurity, according to FAO. Cultivated meat (CM) and cultivated seafood (CS) are protein-rich alternatives for traditional meat and fish that are obtained via cellular agriculture (CA) i.e., tissue engineering for food applications. Stem and progenitor cells are the building blocks and starting point for any CA bioprocess. This review presents CA-relevant vertebrate cell types and procedures needed for their myogenic and adipogenic differentiation since muscle and fat tissue are the primary target tissues for CM/CS production. The review also describes existing challenges, such as a need for immortalized cell lines, or physical and biochemical parameters needed for enhanced meat/fat culture efficiency and ways to address them.
Collapse
Affiliation(s)
- Teodora Knežić
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr. Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (L.J.); (M.D.)
| | - Ljiljana Janjušević
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr. Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (L.J.); (M.D.)
| | - Mila Djisalov
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr. Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (L.J.); (M.D.)
| | - Supansa Yodmuang
- Research Affairs, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Rd, Pathumwan, Bangkok 10330, Thailand;
| | - Ivana Gadjanski
- Center for Biosystems, BioSense Institute, University of Novi Sad, Dr. Zorana Djindjica 1, 21000 Novi Sad, Serbia; (T.K.); (L.J.); (M.D.)
| |
Collapse
|