1
|
Wang Z, Guo L, Ding X, Li F, Xu H, Li S, Wang X, Li K, Yue X. Supplementation of chestnut tannins in diets can improve meat quality and antioxidative capability in Hu lambs. Meat Sci 2023; 206:109342. [PMID: 37729859 DOI: 10.1016/j.meatsci.2023.109342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/25/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023]
Abstract
Chestnut tannins (CNT), as a source of hydrolyzable tannins, positively affect the antioxidant status of livestock. In the current study, 90 male Hu lambs were used to investigate the effect of dietary CNT intake on growth performance, nutrient digestibility, meat quality and oxidative stability, rumen microbial, and the transcriptomes of muscle and liver. A completely randomized design with three CNT intake levels (0, 0.3%, and 0.6%) was used. Rumen microbial and nutrient digestibility were not significantly altered by CNT intake. Diets with 0.3% CNT intake significantly reduced the shear force, yellowness at 24 h, and C20:2 polyunsaturated fatty acids of lamb meat and malondialdehyde in serum and longissimus thoracis (LT) muscle. Meanwhile, the 0.3% CNT diet significantly increased average daily gain during the 1- 21 days and 64- 90 days, dry matter intake during the 1- 21 days, the slaughter weight, and liver index of lambs. The 0.3% CNT diet significantly increased C26:0 saturated fatty acids, total antioxidant capacity, glutathione peroxidase, superoxide dismutase, and catalase in LT muscle. The meat shelf life of 0.3% CNT and 0.6% CNT groups was prolonged by 8.7 h and 5.4 h, respectively. Transcriptomic analysis revealed that CNT supplementation can induce the expression of antioxidant enzyme gene (CAT, SOD1), and the differentially expressed genes were mainly involved in antioxidant activity, transferase activity, and adenosine triphosphate binding. These results suggest that 0.3% CNT intake can relieve the oxidative stress of lambs, and improve the stability of meat color and meat tenderness, due to the enhanced antioxidative capacity.
Collapse
Affiliation(s)
- Zhongyu Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China.
| | - Long Guo
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China.
| | - Xing Ding
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China.
| | - Fadi Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China.
| | - Hui Xu
- Minqin Defu Agricultural Science and Technology Co., LTD, Minqin County, Gansu Province 733399, PR China.
| | - Shirong Li
- Animal Husbandry and Veterinary Extension Station of Minqin County, Minqin County, Gansu Province 733399, PR China.
| | - Xinji Wang
- Animal Husbandry and Veterinary Extension Station of Minqin County, Minqin County, Gansu Province 733399, PR China.
| | - Kaidong Li
- Animal Husbandry and Veterinary Extension Station in Chongxing Town of Minqin County, Minqin County, Gansu Province 733399, PR China.
| | - Xiangpeng Yue
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China.
| |
Collapse
|
2
|
McCoard SA, Pacheco D. The significance of N-carbamoylglutamate in ruminant production. J Anim Sci Biotechnol 2023; 14:48. [PMID: 37046347 PMCID: PMC10100185 DOI: 10.1186/s40104-023-00854-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/12/2023] [Indexed: 04/14/2023] Open
Abstract
Improving the efficiency and production of grazing ruminants to support food and fiber production, while reducing the environmental footprint and meeting the welfare needs of the animals, is important for sustainable livestock production systems. Development of new technologies that can improve the efficiency of nitrogen (N) utilization in ruminants, and that are effective and safe, has important implications for ruminant livestock production. N-carbomoylglutamate (NCG) is a functional micronutrient that stimulates endogenous synthesis of arginine, which can improve survival, growth, lactation, reproductive performance, and feed efficiency in mammals. There is a growing body of evidence to support the potential of dietary NCG supplementation to improve the productive capacity and N utilization efficiency of ruminants. This review summarizes the current literature on the effects of dietary supplementation with NCG in ruminants and impacts on production and potential to reduce the environmental footprint of farmed ruminant livestock. The current literature highlights the potential for commercial application in ruminant livestock to improve productivity and N utilization efficiency.
Collapse
Affiliation(s)
- Susan A McCoard
- AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North, 4442, New Zealand.
| | - David Pacheco
- AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North, 4442, New Zealand
| |
Collapse
|
3
|
Ma W, Dang DX, Zhang J, Wang C, Li D. Effects of dietary supplementation of N-carbamylglutamate on the haematology parameters, secondary sexual characteristics and testicular gene expression in roosters. J Anim Physiol Anim Nutr (Berl) 2023; 107:621-630. [PMID: 35436370 DOI: 10.1111/jpn.13714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 01/21/2023]
Abstract
A total of 288 11-week-age roosters were used to evaluate the effects of dietary supplementation of N-carbamylglutamate (NCG) on reproductive traits and testicular gene expression. The experimental periods were 12 weeks. All birds were randomly assigned to 4 treatments with 6 replicates per treatment and 12 birds per replicate. Dietary conditions were based on a basal diet and supplemented with 0%, 0.08%, 0.12%, or 0.16% NCG to form C, N1, N2 and N3 groups respectively. Dietary supplementation of NCG had positive effects on the seminiferous tubule parameters, serum gonadotropin-releasing hormone and testosterone levels and the secondary sexual characteristics. Transcriptomics analysis was performed on the testicular tissues between C and N3 groups at the 16-week-age. Genes were mainly enriched in nine pathways, such as cytochrome P450 exogenous metabolism, drug metabolism, steroid hormone synthesis and glutathione metabolism, in which the ZP4 gene, cytochrome P450 family member 11A1 and other genes involved in the maintenance of gonadal function, steroid hormone biosynthesis and metabolism, and so forth, exist differences in expression levels. In summary, dietary supplementation of NCG had positive effects on the reproductive traits of roosters. NCG supplementation improved the development of reproductive traits of roosters by regulating the genes expression in testicular tissues and thus improved the synthesis of reproductive hormones in vivo.
Collapse
Affiliation(s)
- Wei Ma
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - De Xin Dang
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China.,Department of Animal Resource & Science, Dankook University, Cheonan, South Korea
| | - Jiehui Zhang
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Chunqiang Wang
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Desheng Li
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
4
|
Ma W, Lu Y, Wang C. Production performance, egg quality, and uterine gene expression for layers as affected by N-Carbamylglutamate supplementation. Front Vet Sci 2023; 10:1110801. [PMID: 36876008 PMCID: PMC9982039 DOI: 10.3389/fvets.2023.1110801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/18/2023] [Indexed: 02/19/2023] Open
Abstract
Introduction Supplementation of exogenous additives is a strategy to improve laying performance of layers by regulating uterine function. N-Carbamylglutamate (NCG) as an activator for endogenous arginine synthesis has the potential to regulate the laying performance of layers, but its effects have not been fully understood. Methods This study investigated the effects of dietary supplementation of NCG on production performance, egg quality, and uterine gene expression in layers. A total of 360 45-week-old layers with a genetic line of Jinghong No. 1 were used in this study. The experimental period was 14 weeks. All birds were divided into 4 treatments with 6 replicates per treatment and 15 birds per replicate. Dietary treatments were based on a basal diet and supplemented with 0, 0.08, 0.12, or 0.16% NCG to form C, N1, N2, and N3 groups. Results and discussion We found that layers in group N1 had higher egg production rate than those in group C. Egg weight was significantly reduced, while eggshell thickness was significantly improved, by treatment. However, the albumen height and Haugh unit were the lowest in group N3. Based on the above results, groups C and N1 were selected for further transcriptomics analysis of uterine tissue by RNA-seq. More than 7.4 Gb clean reads and 19,882 tentative genes were obtained using the Gallus gallus genome as a reference. Transcriptomics analysis in uterus tissue revealed that 95 differentially expressed genes (DEGs) were upregulated and 127 DEGs were downregulated. Functional annotation and pathway enrichment analysis showed that DEGs in uterine tissue were mainly enriched in glutathione metabolism, cholesterol metabolism, and glycerolipid metabolism, etc. Vitamin A metabolism-related gene, RBP1, nutrient transport-related gene, ALB, protein synthesis-related gene, METTL21C, and calcium transport-related gene, RYR2, CACNB2, RAMP3, and STAC, were significantly regulated by 0.08% NCG supplementation. Therefore, we concluded that NCG supplementation at a dose of 0.08% improved production performance and egg quality of layers by regulating uterus function.
Collapse
Affiliation(s)
- Wei Ma
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yi Lu
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Chunqiang Wang
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|