1
|
Ruiz-Rubio S, Ortiz-Leal I, Torres MV, Somoano A, Sanchez-Quinteiro P. Do fossorial water voles have a functional vomeronasal organ? A histological and immunohistochemical study. Anat Rec (Hoboken) 2024; 307:2912-2932. [PMID: 38112130 DOI: 10.1002/ar.25374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023]
Abstract
The fossorial water vole, Arvicola scherman, is an herbivorous rodent that causes significant agricultural damages. The application of cairomones and alarm pheromones emerges as a promising sustainable method to improve its integrated management. These chemical signals would induce stress responses that could interfere with the species regular reproductive cycles and induce aversive reactions, steering them away from farmlands and meadows. However, there is a paucity of information regarding the water vole vomeronasal system, both in its morphological foundations and its functionality, making it imperative to understand the same for the application of chemical communication in pest control. This study fills the existing gaps in knowledge through a morphological and immunohistochemical analysis of the fossorial water vole vomeronasal organ. The study is primarily microscopic, employing two approaches: histological, using serial sections stained with various dyes (hematoxylin-eosin, Periodic acid-Schiff, Alcian blue, Nissl), and immunohistochemical, applying various markers that provide morphofunctional and structural information. These procedures have confirmed the presence of a functional vomeronasal system in fossorial water voles, characterized by a high degree of differentiation and a significant expression of cellular markers indicative of active chemical communication in this species.
Collapse
Affiliation(s)
- Sara Ruiz-Rubio
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Irene Ortiz-Leal
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Mateo V Torres
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Aitor Somoano
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Villaviciosa, Asturias, Spain
| | - Pablo Sanchez-Quinteiro
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| |
Collapse
|
2
|
Ortiz-Leal I, Torres MV, López-Beceiro A, Fidalgo L, Shin T, Sanchez-Quinteiro P. First Immunohistochemical Demonstration of the Expression of a Type-2 Vomeronasal Receptor, V2R2, in Wild Canids. Int J Mol Sci 2024; 25:7291. [PMID: 39000398 PMCID: PMC11241633 DOI: 10.3390/ijms25137291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/20/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
The mammalian vomeronasal system enables the perception of chemical signals crucial for social communication via the receptor families V1R and V2R. These receptors are linked with the G-protein subunits, Gαi2 and Gαo, respectively. Exploring the evolutionary pathways of V1Rs and V2Rs across mammalian species remains a significant challenge, particularly when comparing genomic data with emerging immunohistochemical evidence. Recent studies have revealed the expression of Gαo in the vomeronasal neuroepithelium of wild canids, including wolves and foxes, contradicting predictions based on current genomic annotations. Our study provides detailed immunohistochemical evidence, mapping the expression of V2R receptors in the vomeronasal sensory epithelium, focusing particularly on wild canids, specifically wolves and foxes. An additional objective involves contrasting these findings with those from domestic species like dogs to highlight the evolutionary impacts of domestication on sensory systems. The employment of a specific antibody raised against the mouse V2R2, a member of the C-family of vomeronasal receptors, V2Rs, has confirmed the presence of V2R2-immunoreactivity (V2R2-ir) in the fox and wolf, but it has revealed the lack of expression in the dog. This may reflect the impact of domestication on the regression of the VNS in this species, in contrast to their wild counterparts, and it underscores the effects of artificial selection on sensory functions. Thus, these findings suggest a more refined chemical detection capability in wild species.
Collapse
Affiliation(s)
- Irene Ortiz-Leal
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av. Carballo Calero s/n, 27002 Lugo, Spain
| | - Mateo V Torres
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av. Carballo Calero s/n, 27002 Lugo, Spain
| | - Ana López-Beceiro
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av. Carballo Calero s/n, 27002 Lugo, Spain
| | - Luis Fidalgo
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av. Carballo Calero s/n, 27002 Lugo, Spain
| | - Taekyun Shin
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Pablo Sanchez-Quinteiro
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Av. Carballo Calero s/n, 27002 Lugo, Spain
| |
Collapse
|
3
|
Ortiz‐Leal I, Torres MV, Barreiro‐Vázquez J, López‐Beceiro A, Fidalgo L, Shin T, Sanchez‐Quinteiro P. The vomeronasal system of the wolf (Canis lupus signatus): The singularities of a wild canid. J Anat 2024; 245:109-136. [PMID: 38366249 PMCID: PMC11161832 DOI: 10.1111/joa.14024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/21/2024] [Accepted: 01/31/2024] [Indexed: 02/18/2024] Open
Abstract
Wolves, akin to their fellow canids, extensively employ chemical signals for various aspects of communication, including territory maintenance, reproductive synchronisation and social hierarchy signalling. Pheromone-mediated chemical communication operates unconsciously among individuals, serving as an innate sensory modality that regulates both their physiology and behaviour. Despite its crucial role in the life of the wolf, there is a lacuna in comprehensive research on the neuroanatomical and physiological underpinnings of chemical communication within this species. This study investigates the vomeronasal system (VNS) of the Iberian wolf, simultaneously probing potential alterations brought about by dog domestication. Our findings demonstrate the presence of a fully functional VNS, vital for pheromone-mediated communication, in the Iberian wolf. While macroscopic similarities between the VNS of the wolf and the domestic dog are discernible, notable microscopic differences emerge. These distinctions include the presence of neuronal clusters associated with the sensory epithelium of the vomeronasal organ (VNO) and a heightened degree of differentiation of the accessory olfactory bulb (AOB). Immunohistochemical analyses reveal the expression of the two primary families of vomeronasal receptors (V1R and V2R) within the VNO. However, only the V1R family is expressed in the AOB. These findings not only yield profound insights into the VNS of the wolf but also hint at how domestication might have altered neural configurations that underpin species-specific behaviours. This understanding holds implications for the development of innovative strategies, such as the application of semiochemicals for wolf population management, aligning with contemporary conservation goals.
Collapse
Affiliation(s)
- Irene Ortiz‐Leal
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of VeterinaryUniversity of Santiago de CompostelaLugoSpain
| | - Mateo V. Torres
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of VeterinaryUniversity of Santiago de CompostelaLugoSpain
| | - José‐Daniel Barreiro‐Vázquez
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of VeterinaryUniversity of Santiago de CompostelaLugoSpain
| | - Ana López‐Beceiro
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of VeterinaryUniversity of Santiago de CompostelaLugoSpain
| | - Luis Fidalgo
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of VeterinaryUniversity of Santiago de CompostelaLugoSpain
| | - Taekyun Shin
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National UniversityJejuRepublic of Korea
| | - Pablo Sanchez‐Quinteiro
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of VeterinaryUniversity of Santiago de CompostelaLugoSpain
| |
Collapse
|
4
|
Torres MV, Ortiz-Leal I, Ferreiro A, Rois JL, Sanchez-Quinteiro P. Immunohistological study of the unexplored vomeronasal organ of an endangered mammal, the dama gazelle (Nanger dama). Microsc Res Tech 2023; 86:1206-1233. [PMID: 37494657 DOI: 10.1002/jemt.24392] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/28/2023]
Abstract
Dama gazelle is a threatened and rarely studied species found primarily in northern Africa. Human pressure has depleted the dama gazelle population from tens of thousands to a few hundred individuals. Since 1970, a founder population consisting of the last 17 surviving individuals in Western Sahara has been maintained in captivity, reproducing naturally. In preparation for the future implementation of assisted reproductive technology, certain aspects of dama gazelle reproductive biology have been established. However, the role played by semiochemical-mediated communications in the sexual behavior of dama gazelle remains unknown due partially to a lack of a neuroanatomical or morphofunctional characterization of the dama gazelle vomeronasal organ (VNO), which is the sensory organ responsible for pheromone processing. The present study characterized the dama gazelle VNO, which appears fully equipped to perform neurosensory functions, contributing to current understanding of interspecies VNO variability among ruminants. By employing histological, lectin-histochemical, and immunohistochemical techniques, we conducted a detailed morphofunctional evaluation of the dama gazelle VNO along its entire longitudinal axis. Our findings of significant structural and neurochemical transformation along the entire VNO suggest that future studies of the VNO should take a similar approach. The present study contributes to current understanding of dama gazelle VNO, providing a basis for future studies of semiochemical-mediated communications and reproductive management in this species. RESEARCH HIGHLIGHTS: This exhaustive immunohistological study of the vomeronasal organ (VNO) of the dama gazelle provides the first evidence of notable differences in the expression of neuronal markers along the rostrocaudal axis of the VNO. This provides a morphological basis for the implementation of pheromones in captive populations of dama gazelle.
Collapse
Affiliation(s)
- Mateo V Torres
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Irene Ortiz-Leal
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | | | | | - Pablo Sanchez-Quinteiro
- Department of Anatomy, Animal Production and Clinical Veterinary Sciences, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| |
Collapse
|
5
|
Alvites R, Caine A, Cherubini GB, Prada J, Varejão ASP, Maurício AC. The Olfactory Bulb in Companion Animals-Anatomy, Physiology, and Clinical Importance. Brain Sci 2023; 13:brainsci13050713. [PMID: 37239185 DOI: 10.3390/brainsci13050713] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
The Olfactory Bulb is a component of the Olfactory System, in which it plays an essential role as an interface between the peripheral components and the cerebral cortex responsible for olfactory interpretation and discrimination. It is in this element that the first selective integration of olfactory stimuli occurs through a complex cell interaction that forwards the received olfactory information to higher cortical centers. Considering its position in the organizational hierarchy of the olfactory system, it is now known that changes in the Olfactory Bulb can lead to olfactory abnormalities. Through imaging techniques, it was possible to establish relationships between the occurrence of changes secondary to brain aging and senility, neurodegenerative diseases, head trauma, and infectious diseases with a decrease in the size of the Olfactory Bulb and in olfactory acuity. In companion animals, this relationship has also been identified, with observations of relations between the cranial conformation, the disposition, size, and shape of the Olfactory Bulb, and the occurrence of structural alterations associated with diseases with different etiologies. However, greater difficulty in quantitatively assessing olfactory acuity in animals and a manifestly smaller number of studies dedicated to this topic maintain a lack of concrete and unequivocal results in this field of veterinary sciences. The aim of this work is to revisit the Olfactory Bulb in companion animals in all its dimensions, review its anatomy and histological characteristics, physiological integration in the olfactory system, importance as a potential early indicator of the establishment of specific pathologies, as well as techniques of imaging evaluation for its in vivo clinical exploration.
Collapse
Affiliation(s)
- Rui Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Instituto Universitário de Ciências da Saúde (CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Abby Caine
- Dick White Referrals, Station Farm, London Road, Six Mile Bottom, Cambridgeshire CB8 0UH, UK
| | - Giunio Bruto Cherubini
- Department of Veterinary Sciences, Veterinary Teaching Hospital "Mario Modenato", University of Pisa, Via Livornese Lato Monte, San Piero a Grado, 56122 Pisa, Italy
| | - Justina Prada
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Centro de Ciência Animal e Veterinária (CECAV), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Artur Severo P Varejão
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Centro de Ciência Animal e Veterinária (CECAV), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
6
|
Ortiz-Leal I, Torres MV, Vargas-Barroso V, Fidalgo LE, López-Beceiro AM, Larriva-Sahd JA, Sánchez-Quinteiro P. The olfactory limbus of the red fox ( Vulpes vulpes). New insights regarding a noncanonical olfactory bulb pathway. Front Neuroanat 2023; 16:1097467. [PMID: 36704406 PMCID: PMC9871471 DOI: 10.3389/fnana.2022.1097467] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction: The olfactory system in most mammals is divided into several subsystems based on the anatomical locations of the neuroreceptor cells involved and the receptor families that are expressed. In addition to the main olfactory system and the vomeronasal system, a range of olfactory subsystems converge onto the transition zone located between the main olfactory bulb (MOB) and the accessory olfactory bulb (AOB), which has been termed the olfactory limbus (OL). The OL contains specialized glomeruli that receive noncanonical sensory afferences and which interact with the MOB and AOB. Little is known regarding the olfactory subsystems of mammals other than laboratory rodents. Methods: We have focused on characterizing the OL in the red fox by performing general and specific histological stainings on serial sections, using both single and double immunohistochemical and lectin-histochemical labeling techniques. Results: As a result, we have been able to determine that the OL of the red fox (Vulpes vulpes) displays an uncommonly high degree of development and complexity. Discussion: This makes this species a novel mammalian model, the study of which could improve our understanding of the noncanonical pathways involved in the processing of chemosensory cues.
Collapse
Affiliation(s)
- Irene Ortiz-Leal
- Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Mateo V. Torres
- Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Víctor Vargas-Barroso
- Cellular Neuroscience, IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria
| | | | | | - Jorge A. Larriva-Sahd
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Pablo Sánchez-Quinteiro
- Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain,*Correspondence: Pablo Sanchez-Quinteiro
| |
Collapse
|
7
|
Comparative Neuroanatomical Study of the Main Olfactory Bulb in Domestic and Wild Canids: Dog, Wolf and Red Fox. Animals (Basel) 2022; 12:ani12091079. [PMID: 35565506 PMCID: PMC9106054 DOI: 10.3390/ani12091079] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The study of the morphological, physiological and molecular changes associated with the domestication process has been one of the most interesting unresolved neuroanatomical issues. The olfactory system deserves special attention since both wild and domestic canids are macrosmatic mammals with very high olfactory capacities. Nevertheless, the question remains open as to whether domestication involuted the sense of smell in domestic dogs. Further, there is a lack of comparative morphological information on the olfactory bulb, the first structure integrating olfactory sensory information in the brain. To provide comparative information on the domestication process, we studied the olfactory bulb of dogs and their two most important wild ancestors: the wolf and the fox. The study was carried out by macroscopic dissection and histological and immunohistochemical techniques and has allowed us to verify, first of all, that the three species present olfactory bulbs corresponding to a macrosmatic animal, but that there are noticeable differences not only in size, which was already known, but also in the cellularity and intensity of the immunohistochemical pattern characteristic of each species. These variations point to a reduction of the olfactory system as a consequence of the selection pressure associated with the domestication of animals. Abstract The sense of smell plays a fundamental role in mammalian survival. There is a considerable amount of information available on the vomeronasal system of both domestic and wild canids. However, much less information is available on the canid main olfactory system, particularly at the level of the main olfactory bulb. Comparative study of the neuroanatomy of wild and domestic canids provides an excellent model for understanding the effects of selection pressure associated with domestication. A comprehensive histological (hematoxylin–eosin, Nissl, Tolivia and Gallego’s Trichrome stains), lectin (UEA, LEA) and immunohistochemical (Gαo, Gαi2, calretinin, calbindin, olfactory marker protein, glial fibrillary acidic protein, microtubule-associated protein 2) study of the olfactory bulbs of the dog, fox and wolf was performed. Our study found greater macroscopic development of the olfactory bulb in both the wolf and fox compared to the dog. At the microscopic level, all three species show a well-developed pattern of lamination and cellularity typical of a macrosmatic animal. However, greater development of cellularity in the periglomerular and mitral layers of wild canids is characteristic. Likewise, the immunohistochemical study shows comparable results between the three species, but with a noticeably higher expression of markers in wild canids. These results suggest that the reduction in encephalization experienced in dogs due to domestication also corresponds to a lower degree of morphological and neurochemical differentiation of the olfactory bulb.
Collapse
|