1
|
Yi X, Qiu Y, Tang X, Lei Y, Pan Y, Raza SHA, Althobaiti NA, Albalawi AE, Al Abdulmonem W, Makhlof RTM, Alsaad MA, Zhang Y, Sun X. Effect of Five Different Antioxidants on the Effectiveness of Goat Semen Cryopreservation. Reprod Sci 2024; 31:1958-1972. [PMID: 38267808 DOI: 10.1007/s43032-024-01452-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024]
Abstract
The effective combination of semen cryopreservation and artificial insemination has a positive effect on the conservation of germplasm resources, production and breeding, etc. However, during the process of semen cryopreservation, the sperm cells are very susceptible to different degrees of physical, chemical, and oxidative stress damage. Oxidative damage is the most important factor that reduces semen quality, which is affected by factors such as dilution equilibrium, change of osmotic pressure, cold shock, and enzyme action during the freezing-thawing process, which results in the aggregation of a large amount of reactive oxygen species (ROS) in sperm cells and affects the quality of semen after thawing. Therefore, the method of adding antioxidants to semen cryoprotective diluent is usually used to improve the effect of semen cryopreservation. The aim of this experiment was to investigate the effects of adding five antioxidants (GLP, Mito Q, NAC, SLS, and SDS) to semen cryoprotection diluent on the cryopreservation effect of semen from Saanen dairy goats. The optimal preservation concentrations were screened by detecting sperm viability, plasma membrane integrity, antioxidant capacity, and acrosomal enzyme activities after thawing, and the experimental results were as follows: the optimal concentrations of GLP, Mito Q, NAC, SLS, and SDS added to semen cryopreservation diluent at different concentrations were 0.8 mg/mL, 150 nmol/L, 0.6 mg/mL, 0.15 mg/ mL, 0.6 mg/mL, and 0.15 mg/mL. The optimal concentrations of the five antioxidants were added to the diluent and analyzed after 1 week of cryopreservation, and it was found that sperm viability, plasma membrane integrity, and mitochondrial activity were significantly enhanced after thawing compared with the control group (P < 0.05), and their antioxidant capacity was significantly enhanced (P < 0.05). Therefore, the addition of the above five antioxidants to goat sperm cryodilution solution had a better enhancement of sperm cryopreservation. This study provides a useful reference for exploring the improvement of goat semen cryoprotection effect.
Collapse
Affiliation(s)
- Xiaohua Yi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yanbo Qiu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiaoqin Tang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yichen Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yun Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512005, China
| | - Norah A Althobaiti
- Biology Department, College of Science and Humanities, Shaqra University, Al Quwaiiyah, 19257, Al Quwaiiyah, Saudi Arabia
| | - Aishah E Albalawi
- Faculty of Science, Department of Biology, University of Tabuk, 47913, Tabuk, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraidah, 51452, Kingdom of Saudi Arabia
| | - Raafat T M Makhlof
- Department of Parasitology, Faculty of Medicine, Umm Al Qura University, P.O. Box 715, 21955, Makkah, Saudi Arabia
| | - Mohammad A Alsaad
- College of Medicine, Umm AL Qura University, 21955, Makkah, Saudi Arabia
| | - Yu Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiuzhu Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
- College of Grassland Agriculture, Northwest A&F University, Yangling, China.
| |
Collapse
|
2
|
In Silico Screening and Development of Microsatellite Markers for Genetic Analysis in Perca fluviatilis. Animals (Basel) 2022; 12:ani12141809. [PMID: 35883356 PMCID: PMC9312242 DOI: 10.3390/ani12141809] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
Perca fluviatilis is an economically important species of freshwater fish. To understand the genetic structure of P. fluviatilis in China, 268 samples were collected from Wulungu Lake (WL), Jili Lake (JL), the Wulungu River (WR), and the Kalaeerqisi River (KR). These samples were then analyzed using microsatellite markers. A total of 98,425 microsatellite markers were developed based on the genomic data, and 29 polymorphic microsatellite markers were selected to analyze genetic diversity in this study. The number of alleles (Na) and observed heterozygosity (Ho) per population ranged from 4.621 (KR) to 11.172 (WL) and from 0.510 (KR) to 0.716 (JL), respectively. The results of the polymorphic information content (PIC) showed that the WL, JL, and WR populations were highly polymorphic (PIC≥ 0.5) and that the KR population was moderately polymorphic (0.25 ≤ PIC < 0.5). The genetic differentiation coefficient (Fst) among the four P. fluviatilis populations was 0.074, indicating moderate genetic differentiation among the populations in Xinjiang. The reason for the significant difference between the rivers and lakes could be the presence of a dam blocking the flow of P. fluviatilis. The development of microsatellite markers provides support for population genetics in the future. The evaluation of the genetic structure of P. fluviatilis in Xinjiang provides a reference for the reproduction and conservation of P. fluviatilis.
Collapse
|