1
|
Eldiasty JG, Al-Sayed HMA, Farsi RM, Algothmi KM, Alatawi FS, AlGhabban AJ, Alnawwar WH, Alatawi AO, Hamdy HM. The beneficial impacts of nano-propolis liposomes as an anti-stressor agent on broiler chickens kept under cyclic heat stress. Poult Sci 2024; 103:103695. [PMID: 38626693 PMCID: PMC11036096 DOI: 10.1016/j.psj.2024.103695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/11/2024] [Accepted: 03/25/2024] [Indexed: 04/18/2024] Open
Abstract
This research assessed the impacts of dietary nano-propolis liposomes (NPRL) inclusion on the growth, blood biochemical components, immune function, and oxidative status of broilers exposed to cyclic heat stress (HS). Birds were fed with a basal diet supplemented with various levels of NPRL at 0 (HS), 100 (NPRL100), 250 (NPRL250) and 400 (NPRL400) mg/kg diets. Diets supplemented with NPRL significantly improved the growth indices and feed utilization, hemoglobin and red blood cells (P < 0.01). White blood cells, lymphocytes and monocytes were significantly decreased by NPRL inclusion (P < 0.001). Dietary supplementation of 250 or 400 mg of NPRL /kg reduced the pathogenic bacteria counts (Salmonella, E. coli and Enterococci) (P < 0.01). The birds fed diets with NPRL (400 mg/kg diet) significantly downregulated the mRNA IFNγ gene (p < 0.001), while both groups (NPRL100 and NPRL250) had similar results (P > 0.05). The iNOS gene was significantly decreased by the dietary NPRL inclusion in a dose-dependent manner. Birds in NRPL groups had inferior levels of the mRNA of interleukin-4 and tumor necrosis factor genes. The lysosome activity was significantly reduced by dietary 250 or 400 mg of NPRL inclusion (P < 0.001). Birds in NPRL250 and NPRL100 had greater IgG (P < 0.05) than the other groups. Regarding oxidative-related biomarkers, dietary NPRL inclusion decreased myeloperoxidase and malondialdehyde levels significantly compared to those with the HS group (P < 0.001). Broilers in the NPRL400 group had the lowest levels of total bilirubin and gamma-glutamyl transferase. NPRL250 had the lowest values of urea compared with other groups (P < 0.001). Dietary NPRL inclusion improved the broiler's hepatic and intestinal architecture exposed to cyclic heat stress. These results indicate that employing NPRL in the diets of stressed broilers can enhance heat resistance by enhancing blood metabolites and immunity, reducing inflammation and oxidative stress.
Collapse
Affiliation(s)
- Jayda G Eldiasty
- Biology Department, University College of Haqel, University of Tabuk, Tabuk, Saudi Arabia.
| | - Hanan M A Al-Sayed
- Department of Food and Nutrition Science, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabi; Department of Food Science, Faculty of Agricultural, University of Ain Shams, Cairo, Egypt
| | - Reem M Farsi
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khloud M Algothmi
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Immunology unit KFMC, King Abdulaziz University, Kingdom of Saudi Arabia
| | - Fatema S Alatawi
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - Areej J AlGhabban
- Biology Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Asma O Alatawi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - Haggag M Hamdy
- Nutrition and Food Science Department, Faculty of Home Economics, Helwan University, Helwan, Egypt
| |
Collapse
|
2
|
Abdel-Maksoud EM, Daha AAEF, Taha NM, Lebda MA, Sadek KM, Alshahrani MY, Ahmed AE, Shukry M, Fadl SE, Elfeky M. Effects of ginger extract and/or propolis extract on immune system parameters of vaccinated broilers. Poult Sci 2023; 102:102903. [PMID: 37506621 PMCID: PMC10413198 DOI: 10.1016/j.psj.2023.102903] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/18/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Newcastle disease (ND), avian influenza (AI, H5N8), and infectious bronchitis (IB) are important diseases in the poultry industry and cause significant losses. Vaccination is the most practical method for controlling infectious diseases. To reduce vaccination costs and several disorders in poultry farms, using herbal water supplements for immunomodulation with vaccination is critical to improving or preventing some conditions in the poultry industry. However, drinking water supplementation of ginger extract (GE)/propolis extract (PE) alone/in combination may increase broilers' humoral and cellular immunity due to the immunomodulatory effects of ginger and propolis. This protocol aimed to see how GE/PE alone or in combination improved the immunity, immune organ gene expression, and histology of the immune organs of broilers for 35 d after vaccination against NDV, H5N8, IBV, and IBDV. The chicks were dispensed into 5 groups according to GE and/or PE with vaccination. The control group was offered normal drinking water without any supplements or vaccinations. The GE group was supplemented with ginger extract (1 mL/L drinking water) in the drinking water before and after vaccination for 2 and 3 d, respectively. The GE+PE group was supplemented with GE (0.5 mL/L drinking water) and PE (0.5 mL/L drinking water) in the drinking water before and after vaccination for 2 and 3 d, respectively. The PE group was supplemented with propolis extract (1 mL/L drinking water) in the drinking water before and after vaccination for 2 and 3 d, respectively. The fifth group was the vaccinated untreated group. This experiment showed the immunomodulatory properties of GE and/or PE against 3 common diseases, NDV, AI, and IB, in broiler chicken farms for 35 d applied to a vaccination program. Thus, ginger extract and propolis extract supplementation in drinking water increased antibody titer, INF, IL10, and IL2 and TLR3 gene expression in the bursa of Fabricius, thymus, and spleen, respectively, as well as cellular immunity as indicated by increased CD3, CD4, and CD8 in the bursa of Fabricius, thymus, and spleen, respectively, with normal lymphocytes in the medulla of the bursa, thymus, and spleen. In conclusion, propolis extracts alone or with GE improved all of the metrics mentioned above without harming the histology of the immune organs.
Collapse
Affiliation(s)
- Eman M Abdel-Maksoud
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21526, Egypt
| | - Ahmed Abd El Fattah Daha
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21526, Egypt
| | - Nabil M Taha
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21526, Egypt
| | - Mohamed A Lebda
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21526, Egypt
| | - Kadry M Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 9088, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Sabreen E Fadl
- Biochemistry Department, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51744 Egypt
| | - Mohamed Elfeky
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 21526, Egypt
| |
Collapse
|
3
|
Taiwanese green propolis ameliorates metabolic syndrome via remodeling of white adipose tissue and modulation of gut microbiota in diet-induced obese mice. Biomed Pharmacother 2023; 160:114386. [PMID: 36773526 DOI: 10.1016/j.biopha.2023.114386] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Excessive energy intake leads to dysbiosis of intestinal microbiota and puts surrounding tissues under oxidative stress and inflammation, contributing to the development of metabolic syndrome. Taiwanese green propolis (TGP) exhibits a broad spectrum of biological activities, including anti-bacterial, anti-inflammatory, and antioxidant properties. However, the benefits of TGP on metabolic syndrome have not been explained in detail. In this study, we examined the preventive effects of TGP on high-fat diet (HFD)-induced obesity. The results showed that TGP supplementation at 1000 ppm improved condition such as hyperlipidemia, fat accumulation, liver steatosis, and whitening of brown adipose tissue (BAT) in mice. In addition, we observed more cold-induced non-shivering thermogenesis by BAT in TGP treatment with 1000 ppm group. At lower dose of 500 ppm, TGP improved glucose intolerance and insulin insensitivity in HFD mice and restructured the composition of gut microbiota to reduce dysbiosis, which involved an increase in the abundance of metabolism-related bacteria such as Lachnospiraceae NK4A136 group and the decrease in Desulfovibrio. The change of dominant microbiota was associated with the homeostasis of blood glucose and lipid. Transcriptome and micro-western array analysis revealed that TGP supplementation at 500 ppm promoted the browning and adipogenesis in white adipose tissue (WAT), blocked inflammation signaling and attenuated reactive oxygen species, contributing to healthy WAT remodeling and offsetting negative metabolic effects of obesity. We concluded that TGP modulated the function of BAT, WAT, and gut microbiota, bringing a balance to the glucose and lipid homeostasis in the body.
Collapse
|
4
|
Sierra-Galicia MI, Rodríguez-de Lara R, Orzuna-Orzuna JF, Lara-Bueno A, García-Muñiz JG, Fallas-López M, Hernández-García PA. Supplying Bee Pollen and Propolis to Growing Rabbits: Effects on Growth Performance, Blood Metabolites, and Meat Quality. Life (Basel) 2022; 12:life12121987. [PMID: 36556352 PMCID: PMC9788554 DOI: 10.3390/life12121987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/13/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
The objective of this study was to evaluate the effect of supplementation with bee pollen (BP) and propolis (PRO) on productive performance, Eimeria oocyst counts in feces, blood metabolites, and the meat quality of growing rabbits. A total of 160 hybrid rabbits (California × New Zealand) of 30 days of age and 643 ± 8.0 g body weight (BW) were assigned to four treatments with 10 replicates each (four rabbits/replicate). The treatments were as follows: (1) CON: rabbits fed basal diet and not supplemented with BP or PRO; (2) BP500: CON + BP (500 mg/kg BW); (3) PRO50: CON + PRO (50 µL/kg BW); and (4) BP + PRO: CON + BP (500 mg/kg BW) + PRO (50 µL/kg BW). Higher daily weight gain (p = 0.04) and lower feed conversion rate (p = 0.03) were observed in rabbits supplemented with PRO50. In addition, supplementation with PRO50 and BP + PRO reduced the amount of Eimeria oocysts per gram of feces (p < 0.05). Most hematological and serum biochemical parameters were similar in rabbits of all treatments. Protein content, collagen, and meat color were similar between treatments. In conclusion, propolis supplementation (50 µL/kg BW) can prevent coccidiosis and act as a natural growth promoter in rabbits without affecting animal health and meat quality.
Collapse
Affiliation(s)
- María Inés Sierra-Galicia
- Posgrado en Producción Animal, Departamento de Zootecnia, Universidad Autónoma Chapingo, Texcoco 56230, Mexico
| | - Raymundo Rodríguez-de Lara
- Posgrado en Producción Animal, Departamento de Zootecnia, Universidad Autónoma Chapingo, Texcoco 56230, Mexico
- Correspondence: (R.R.-d.L.); (J.F.O.-O.)
| | - José Felipe Orzuna-Orzuna
- Posgrado en Producción Animal, Departamento de Zootecnia, Universidad Autónoma Chapingo, Texcoco 56230, Mexico
- Correspondence: (R.R.-d.L.); (J.F.O.-O.)
| | - Alejandro Lara-Bueno
- Posgrado en Producción Animal, Departamento de Zootecnia, Universidad Autónoma Chapingo, Texcoco 56230, Mexico
| | - José Guadalupe García-Muñiz
- Posgrado en Producción Animal, Departamento de Zootecnia, Universidad Autónoma Chapingo, Texcoco 56230, Mexico
| | - Marianela Fallas-López
- “Conejos” Centro de Investigación Científica del Estado de México A.C. (COCICEMAC), Coatlinchan 56250, Mexico
| | | |
Collapse
|
5
|
Anti-Biofilm Activities of Chinese Poplar Propolis Essential Oil against Streptococcus mutans. Nutrients 2022; 14:nu14163290. [PMID: 36014799 PMCID: PMC9412247 DOI: 10.3390/nu14163290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Streptococcus mutans (S. mutans) is a common cariogenic bacterium that secretes glucosyltransferases (GTFs) to synthesize extracellular polysaccharides (EPSs) and plays an important role in plaque formation. Propolis essential oil (PEO) is one of the main components of propolis, and its antibacterial activity has been proven. However, little is known about the potential effects of PEO against S. mutans. We found that PEO has antibacterial effects against S. mutans by decreasing bacterial viability within the biofilm, as demonstrated by the XTT assay, live/dead staining assay, LDH activity assay, and leakage of calcium ions. Furthermore, PEO also suppresses the total of biofilm biomasses and damages the biofilm structure. The underlying mechanisms involved may be related to inhibiting bacterial adhesion and GTFs activity, resulting in decreased production of EPSs. In addition, a CCK8 assay suggests that PEO has no cytotoxicity on normal oral epithelial cells. Overall, PEO has great potential for preventing and treating oral bacterial infections caused by S. mutans.
Collapse
|
6
|
Chien YH, Yu YH, Ye SR, Chen YW. Antibacterial and Antioxidant Activity of the Fruit of Macaranga tanarius, the Plant Origin of Taiwanese Green Propolis. Antioxidants (Basel) 2022; 11:antiox11071242. [PMID: 35883733 PMCID: PMC9312052 DOI: 10.3390/antiox11071242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Taiwanese green propolis (TGP) is widely used in traditional medicine and exerts a broad spectrum of biological activities, including those anti-inflammatory and anti-cancer in nature, resulting from an abundant level of functional propolins (prenylated flavanone) in the TGP. However, the plant origin of TGP has not been clarified. In this study, we collected the surface material of Macaranga tanarius fruit and comparatively analyzed the chemical composition, antibacterial activity, and antioxidant activity with TGP. The results revealed that there was no difference between the chemical composition of the glandular trichome extract of M. tanarius and those in propolis. Moreover, M. tanarius fruit extract was enriched in propolins (C, D, F, and G) and effectively inhibited the growth of Gram-positive strains. Propolins, TGP, and M. tanarius fruit extract showed powerful free radical-scavenging and ferrous-reducing activity. Collectively, we have confirmed the plant source of TGP is M. tanarius, and this plant has the enormous potential to be developed as a pharmaceutical plant due to the potent biological activities and the high amount of functional propolins.
Collapse
|