1
|
Chen C, Li Y, Wu Z, Ruan Y, Long T, Wang X, Li W, Ren H, Liao X, Liu Y, Lian X, Sun J. Cat and dog feces as reservoirs of diverse novel antibiotic resistance genes. ENVIRONMENTAL RESEARCH 2024; 261:119690. [PMID: 39068967 DOI: 10.1016/j.envres.2024.119690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/21/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Companion animals have the potential to greatly enhance the physical and mental health of humans, thus leading to an increased focus on the interactions between humans and pets. Currently, the inappropriate and excessive utilization of antimicrobial agents has become prevalent in veterinary clinical practice for pets. This antibiotic contamination phenomenon has a profound impact on the enrichment of antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs) in pets. However, the pet-associated resistome, especially the novel ARGs in pets, represents a relatively neglected area. In this study, we successfully constructed a total of 12 libraries using the functional metagenomics approach to assess the diversity of ARGs in pet cats and dogs from four pet hospitals. Through the integration of functional screening and high-throughput sequencing, a total of 122 antibiotic resistance determinants were identified, of which 15 were classified as putative novel ARGs originating from five classes. Functional assessment demonstrated that 6 novel ARGs including one β-lactam, two macrolides, two aminoglycosides, and one rifamycin (RIF), namely blaPF, ermPF, msrPF, aac(6')PF, aph(3')PF, and arrPF, exhibited functionally activity in conferring bacterial phenotypic resistance by increasing the minimum inhibitory concentrations (MICs) with a 4- to 128-fold. Genetic context analysis demonstrated that, with the exception of aac(6')PF and arrPF, the remaining four novel ARGs were found adjacent to mobile genetic elements (MGEs) including IS elements or transposases, which provided a prerequisite for horizontal transfer of these novel ARGs, thereby offering an explanation for their detection in diverse samples collected from various sampling sites. The current study has unveiled the significant role of cat and dog feces as one source of reservoirs of diverse novel ARGs, while also highlighting the potential adverse consequences of their further spread to medically significant pathogens and human commensal organisms.
Collapse
Affiliation(s)
- Caiping Chen
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Yuanyuan Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Zhihong Wu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Yali Ruan
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Tengfei Long
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Xiran Wang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Wenjie Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Hao Ren
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoping Liao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China
| | - Yahong Liu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Xinlei Lian
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China.
| | - Jian Sun
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Zelaya C, Arriagada G, Galarce N, Sanchez F, Escobar B, Miranda M, Vilches R, Varela C, Ríos MP, Matus S, Sáenz L, Cornejo J, Lapierre L. A preliminary report on critical antimicrobial resistance in Escherichia coli, Enterococcus faecalis, and Enterococcus faecium strains isolated from healthy dogs in Chile during 2021-2022. Prev Vet Med 2024; 224:106139. [PMID: 38341943 DOI: 10.1016/j.prevetmed.2024.106139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/13/2024]
Abstract
Antimicrobial Resistance (AMR) represents one of the main current threats to global public health; where production animals, companion animals, humans, and the environment play a significant role in its dissemination. However, little attention has been given to companion animals as reservoirs and disseminators of relevant antimicrobial resistant bacteria, especially in South American countries such as Chile. For this reason, this research aimed to estimate the prevalence of AMR to different critical antibiotics at a screening level in commensal bacteria such as E. coli and Enterococcus spp., isolated from healthy pet dogs in the Metropolitan Region of Chile, studying their geographical distribution and evaluating associations of phenotypic resistance to different antibiotics. Thus, in E. coli we detected AMR to all critical drugs assessed, including 34.1% to amoxicillin, 20.1% to colistin, 15.7% to enrofloxacin, and 9.2% to cefotaxime. On the other hand, AMR prevalence in E. faecalis was 8.1% for ampicillin and 3.4% for vancomycin; while for E. faecium the AMR prevalence was 19.1% for ampicillin and 10.2% for vancomycin. Additionally, significant differences in prevalence of the different possible AMR were detected according to their geographical distribution, suggesting the existence of various risk factors and stressing the need to establish mitigation measures specific to the differences identified.
Collapse
Affiliation(s)
- Carlos Zelaya
- Faculty of Veterinary and Livestock Sciences, University of Chile, Chile
| | - Gabriel Arriagada
- Institute of Agri-food, Animal and Environmental Sciences, Universidad de O'Higgins, Chile
| | - Nicolás Galarce
- School of Veterinary Medicine, Faculty of Life Sciences, Andrés Bello University, Chile
| | - Fernando Sanchez
- Faculty of Veterinary and Livestock Sciences, University of Chile, Chile
| | - Beatriz Escobar
- Faculty of Veterinary and Livestock Sciences, University of Chile, Chile
| | - Mauricio Miranda
- Faculty of Veterinary and Livestock Sciences, University of Chile, Chile
| | - Rocío Vilches
- Faculty of Veterinary and Livestock Sciences, University of Chile, Chile
| | - Camila Varela
- Faculty of Veterinary and Livestock Sciences, University of Chile, Chile
| | - María Paz Ríos
- Faculty of Veterinary and Livestock Sciences, University of Chile, Chile
| | - Sofia Matus
- Faculty of Veterinary and Livestock Sciences, University of Chile, Chile
| | - Leonardo Sáenz
- Faculty of Veterinary and Livestock Sciences, University of Chile, Chile
| | - Javiera Cornejo
- Faculty of Veterinary and Livestock Sciences, University of Chile, Chile.
| | - Lisette Lapierre
- Faculty of Veterinary and Livestock Sciences, University of Chile, Chile.
| |
Collapse
|
3
|
Zheng HH, Yu C, Tang XY, Du CT, Xie GH. Isolation, Identification and Antimicrobial Resistance Analysis of Canine Oral and Intestinal Escherichia coli Resistant to Colistin. Int J Mol Sci 2023; 24:13428. [PMID: 37686243 PMCID: PMC10488236 DOI: 10.3390/ijms241713428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/16/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
In recent years, the antimicrobial resistance in Escherichia coli has gradually developed into a global problem. These resistant bacteria could be transmitted to humans through animal feces in the environment or direct contact with pets, leading to a problem in bacterial treatment for humans and animals. Now, the antibiotic resistance of oral and intestinal microbiota from dog origins remains unclear in China. Therefore, this study first analyzed the current colistin resistance of oral and intestinal microbiota from dog origins in mainland China. A total of 536 samples were collected from dogs in mainland China and, respectively, cultured on the SS and MacConkey agar plate containing colistin (4 μg/mL) to obtain bacteria, and the antibiotic-resistance phenotype of Escherichia coli was investigated for nine antibiotics. Results showed that a total of 2259 colistin-resistant bacteria were isolated from samples and identified, and among them, the isolated rate of Escherichia coli (34.01%, 769/2259) was relatively higher than that of other bacteria. Subsequently, it was found that the resistance of these Escherichia coli was very severe by exploring its resistance to different antibiotics, particularly to three common antibiotics in a clinic which were ceftriaxone, ampicillin and trimethoprim/sulfamethoxazole, with the resistance rates of 60.60% (466/769), 57.22% (440/769), and 53.06% (408/769), respectively. Moreover, the simultaneous resistance of Escherichia coli to one or more antibiotics was determined, and 69.96% (538/769) strains have defined the resistance to both two or more antibiotics, and even 13 of Escherichia coli strains that were resistant to all nine antibiotics, indicating that the Escherichia coli from dog origins has severe antibiotic resistance in the clinic. In conclusion, this study guided the use of antibiotics and could draw attention to antibiotic resistance in veterinary clinical treatment for animals in the future.
Collapse
Affiliation(s)
- Hui-Hua Zheng
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
- College of Animal Science and Technology and College of Veterinary Medicine, Zhejiang A & F University, 666 Wusu Street, Lin’an District, Hangzhou 311300, China
| | - Chao Yu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xin-Yue Tang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Chong-Tao Du
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Guang-Hong Xie
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
4
|
Ewers C, Göpel L, Prenger-Berninghoff E, Semmler T, Kerner K, Bauerfeind R. Occurrence of mcr-1 and mcr-2 colistin resistance genes in porcine Escherichia coli isolates (2010-2020) and genomic characterization of mcr-2-positive E. coli. Front Microbiol 2022; 13:1076315. [PMID: 36569100 PMCID: PMC9780603 DOI: 10.3389/fmicb.2022.1076315] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction The global emergence of plasmid-mediated colistin resistance is threatening the efficacy of colistin as one of the last treatment options against multi-drug resistant Gram-negative bacteria. To date, ten mcr-genes (mcr-1 to mcr-10) were reported. While mcr-1 has disseminated globally, the occurrence of mcr-2 was reported scarcely. Methods and results We determined the occurrence of mcr-1 and mcr-2 genes among Escherichia coli isolates from swine and performed detailed genomic characterization of mcr-2-positive strains. In the years 2010-2017, 7,614 porcine E. coli isolates were obtained from fecal swine samples in Europe and isolates carrying at least one of the virulence associated genes predicting Shiga toxin producing E. coli (STEC), enterotoxigenic E. coli (ETEC) or enteropathogenic E. coli (EPEC) were stored. 793 (10.4%) of these isolates carried the mcr-1 gene. Of 1,477 additional E. coli isolates obtained from sheep blood agar containing 4 mg/L colistin between 2018 and 2020, 36 (2.4%) isolates were mcr-1-positive. In contrast to mcr-1, the mcr-2 gene occurred at a very low frequency (0.13%) among the overall 9,091 isolates. Most mcr-2-positive isolates originated from Belgium (n = 9), one from Spain and two from Germany. They were obtained from six different farms and revealed multilocus sequence types ST10, ST29, ST93, ST100, ST3057 and ST5786. While the originally described mcr-2.1 was predominant, we also detected a new mcr-2 variant in two isolates from Belgium, which was termed mcr-2.8. MCR-2 isolates were mostly classified as ETEC or ETEC-like, while one isolate from Spain represented an atypical enteropathogenic E. coli (aEPEC; eae+). The ST29-aEPEC isolate carried mcr-2 on the chromosome. Another eight isolates carried their mcr-2 gene on IncX4 plasmids that resembled the pKP37-BE MCR-2 plasmid originally described in Belgium in 2015. Three ST100 E. coli isolates from a single farm in Belgium carried the mcr-2.1 gene on a 47-kb self-transmissible IncP type plasmid of a new IncP-1 clade. Discussion This is the first report of mcr-2 genes in E. coli isolates from Germany. The detection of a new mcr-2 allele and a novel plasmid backbone suggests the presence of so far undetected mcr-2 variants and mobilizable vehicles.
Collapse
Affiliation(s)
- Christa Ewers
- Faculty of Veterinary Medicine, Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany,*Correspondence: Christa Ewers,
| | - Lisa Göpel
- Faculty of Veterinary Medicine, Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| | - Ellen Prenger-Berninghoff
- Faculty of Veterinary Medicine, Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| | - Torsten Semmler
- NG1 Microbial Genomics, Robert Koch Institute, Berlin, Germany
| | - Katharina Kerner
- Faculty of Veterinary Medicine, Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| | - Rolf Bauerfeind
- Faculty of Veterinary Medicine, Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
5
|
Hamame A, Davoust B, Hasnaoui B, Mwenebitu DL, Rolain JM, Diene SM. Screening of colistin-resistant bacteria in livestock animals from France. Vet Res 2022; 53:96. [DOI: 10.1186/s13567-022-01113-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/26/2022] [Indexed: 11/24/2022] Open
Abstract
AbstractColistin is frequently used as a growth factor or treatment against infectious bacterial diseases in animals. The Veterinary Division of the European Medicines Agency (EMA) restricted colistin use as a second-line treatment to reduce colistin resistance. In 2020, 282 faecal samples were collected from chickens, cattle, sheep, goats, and pigs in the south of France. In order to track the emergence of mobilized colistin resistant (mcr) genes in pigs, 111 samples were re-collected in 2021 and included pig faeces, food, and water from the same location. All samples were cultured in a selective Lucie Bardet Jean-Marc Rolain (LBJMR) medium and colonies were identified using MALDI-TOF mass spectrometry and then antibiotic susceptibility tests were performed. PCR and Sanger sequencing were performed to screen for the presence of mcr genes. The selective culture revealed the presence of 397 bacteria corresponding to 35 different bacterial species including Gram-negative and Gram-positive. Pigs had the highest prevalence of colistin-resistant bacteria with an abundance of intrinsically colistin-resistant bacteria and from these samples one strain harbouring both mcr-1 and mcr-3 has been isolated. The second collection allowed us to identify 304 bacteria and revealed the spread of mcr-1 and mcr-3 in pigs. In the other samples, naturally, colistin-resistant bacteria were more frequent, nevertheless the mcr-1 variant was the most abundant gene found in chicken, sheep, and goat samples and one cattle sample was positive for the mcr-3 gene. Animals are potential reservoir of colistin-resistant bacteria which varies from one animal to another. Interventions and alternative options are required to reduce the emergence of colistin resistance and to avoid zoonotic transmissions.
Collapse
|
6
|
Laidoudi Y, Ngaiganam EP, Marié JL, Pagnier I, Rolain JM, Mouhamadou Diene S, Davoust B. Colistin Resistance Mechanism in Enterobacter hormaechei subsp. steigerwaltii Isolated from Wild Boar (Sus scrofa) in France. Pathogens 2022; 11:pathogens11091022. [PMID: 36145454 PMCID: PMC9504195 DOI: 10.3390/pathogens11091022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Wild animals may act as efficient antimicrobial-resistance reservoirs and epidemiological links between humans, livestock, and natural environments. By using phenotypic and genotypic characterization, the present study highlighted the occurrence of an antimicrobial-resistant (i.e., amoxicillin, amoxicillin–clavulanic acid, cephalothin, and colistin) Enterobacter hormaechei subsp. steigerwaltii strain in wild boar (Sus scrofa) from France. The molecular analysis conducted showed non-synonymous mutations in the pmrA/pmrB and phoQ/phoP operons and the phoP/Q regulator mgrB gene, leading to colistin resistance. The present data highlight the need for continuous monitoring of multidrug-resistant bacteria in wild animals to limit the spread of these threatening pathogens.
Collapse
Affiliation(s)
- Younes Laidoudi
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France
| | - Edgarthe Priscilla Ngaiganam
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France
| | - Jean-Lou Marié
- Animal Epidemiology Expert Group, French Military Health Service, 37076 Tours, France
| | - Isabelle Pagnier
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France
| | - Jean-Marc Rolain
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France
| | - Seydina Mouhamadou Diene
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France
| | - Bernard Davoust
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 13005 Marseille, France
- IHU-Méditerranée Infection, 13005 Marseille, France
- Animal Epidemiology Expert Group, French Military Health Service, 37076 Tours, France
- Correspondence:
| |
Collapse
|
7
|
Hamame A, Davoust B, Cherak Z, Rolain JM, Diene SM. Mobile Colistin Resistance ( mcr) Genes in Cats and Dogs and Their Zoonotic Transmission Risks. Pathogens 2022; 11:698. [PMID: 35745552 PMCID: PMC9230929 DOI: 10.3390/pathogens11060698] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Pets, especially cats and dogs, represent a great potential for zoonotic transmission, leading to major health problems. The purpose of this systematic review was to present the latest developments concerning colistin resistance through mcr genes in pets. The current study also highlights the health risks of the transmission of colistin resistance between pets and humans. Methods: We conducted a systematic review on mcr-positive bacteria in pets and studies reporting their zoonotic transmission to humans. Bibliographic research queries were performed on the following databases: Google Scholar, PubMed, Scopus, Microsoft Academic, and Web of Science. Articles of interest were selected using the PRISMA guideline principles. Results: The analyzed articles from the investigated databases described the presence of mcr gene variants in pets including mcr-1, mcr-2, mcr-3, mcr-4, mcr-5, mcr-8, mcr-9, and mcr-10. Among these articles, four studies reported potential zoonotic transmission of mcr genes between pets and humans. The epidemiological analysis revealed that dogs and cats can be colonized by mcr genes that are beginning to spread in different countries worldwide. Overall, reported articles on this subject highlight the high risk of zoonotic transmission of colistin resistance genes between pets and their owners. Conclusions: This review demonstrated the spread of mcr genes in pets and their transmission to humans, indicating the need for further measures to control this significant threat to public health. Therefore, we suggest here some strategies against this threat such as avoiding zoonotic transmission.
Collapse
Affiliation(s)
- Afaf Hamame
- Faculté de Pharmacie, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille University, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
| | - Bernard Davoust
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
| | - Zineb Cherak
- Faculté des Sciences de la Nature et de la Vie, Université Batna-2, Route de Constantine, Fésdis, Batna 05078, Algeria;
| | - Jean-Marc Rolain
- Faculté de Pharmacie, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille University, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
| | - Seydina M. Diene
- Faculté de Pharmacie, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille University, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France;
| |
Collapse
|