1
|
Husien HM, Peng W, Essa MOA, Adam SY, Ur Rehman S, Ali R, Saleh AA, Wang M, Li J. The Anti-Inflammatory Properties of Polysaccharides Extracted from Moringa oleifera Leaves on IEC6 Cells Stimulated with Lipopolysaccharide In Vitro. Animals (Basel) 2024; 14:3508. [PMID: 39682473 DOI: 10.3390/ani14233508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/01/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Moringa oleifera (M. oleifera) is a plant with significant medicinal and nutritional value and contains various bioactive compounds, particularly in its leaves (MOL). This study sought to explore the impact of M. oleifera leaf polysaccharides (MOLPs) on lipopolysaccharide (LPS)-activated intestinal epithelial cells (IEC6) and to uncover the mechanisms involved. The cytotoxicity of MOLP on IEC6 cells was assessed using the Cell Counting Kit-8 (CCK-8) assay, which demonstrated a safe concentration range of 0-1280 µg/mL. The impact of MOLP on cell viability was further evaluated over 12 to 48 h. IEC6 cells were treated with three concentrations of MOLP low (25 µg/mL), medium (50 µg/mL), and high (100 µg/mL) alongside LPS (50 µg/mL) stimulation for one day. The findings revealed that treatment with MOLP significantly promoted cell migration and increased the production of interleukin-10 (IL-10), while it simultaneously decreased cell apoptosis and the levels of pro-inflammatory cytokines, such as tumour necrosis factor alpha (TNF-α), interleukin 1β (IL-1β), and interleukin 6 (IL-6). Additionally, MOLP treatments across all concentrations significantly reduced the expression of Toll-like receptor 4 (TLR-4), myeloid differentiation primary response 88 (MyD88), phosphorylated nuclear factor kappa B-alpha (pIκB-α), and phosphorylated NF-κB p65 signalling pathways. Moreover, MOLP restored the expression of tight junction proteins, such as zonula occludens-1 (ZO-1) and occludin, which had been disrupted by LPS. These results indicate that MOLP exhibits anti-inflammatory properties by inhibiting inflammatory signalling pathways and maintaining intestinal barrier integrity through the upregulation of tight junction proteins in IEC6 cells. This study enhances our understanding of the anti-inflammatory capabilities of MOLP.
Collapse
Affiliation(s)
- Hosameldeen Mohamed Husien
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- College of Veterinary Medicine, Albutana University, Rufaa 22217, Sudan
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Weilong Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Mohamed Osman Abdalrahem Essa
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- College of Veterinary Medicine, Albutana University, Rufaa 22217, Sudan
| | - Saber Y Adam
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shahab Ur Rehman
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Rahmat Ali
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Ahmed A Saleh
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Animal and Fish Production Department, Faculty of Agriculture (Al-Shatby), Alexandria University, Alexandria City 11865, Egypt
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- State Key-Laboratory of Sheep Genetic Improvement and Healthy-Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China
| | - Jingui Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Ceccopieri C, Madej JP. Chicken Secondary Lymphoid Tissues-Structure and Relevance in Immunological Research. Animals (Basel) 2024; 14:2439. [PMID: 39199973 PMCID: PMC11350708 DOI: 10.3390/ani14162439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Recent discoveries have indicated the importance of developing modern strategies for vaccinations, more ethical research models, and effective alternatives to antibiotic treatment in farm animals. Chickens (Gallus gallus) play a crucial role in this context given the commercial and economic relevance of poultry production worldwide and the search for analogies between the immune systems of humans and birds. Specifically, chicken secondary lymphoid tissues share similar features to their human counterparts. Chickens have several secondary or peripheral lymphoid tissues that are the sites where the adaptive immune response is initiated. The more general classification of these organs divides them into the spleen and skin-, pineal-, or mucosa-associated lymphoid tissues. Each of these tissues is further subdivided into separate lymphoid structures that perform specific and different functions along the animal's body. A review summarizing the state of the art of research on chicken secondary lymphoid organs is of great relevance for the design of future studies.
Collapse
Affiliation(s)
| | - Jan P. Madej
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| |
Collapse
|
3
|
Kadekar D, Udrea AC, Bak SY, Christensen N, Gibbs K, Shen C, Bernardeau M. Cell-Free Culture Supernatant of Lactobacillus acidophilus AG01 and Bifidobacterium animalis subsp. lactis AG02 Reduces the Pathogenicity of NetB-Positive Clostridium perfringens in a Chicken Intestinal Epithelial Cell Line. Microorganisms 2024; 12:839. [PMID: 38674783 PMCID: PMC11052021 DOI: 10.3390/microorganisms12040839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/27/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The worldwide reduction in the use of antibiotics in animal feed is fueling the need for alternatives for the prevention and control of poultry intestinal diseases such as necrotic enteritis (NE), which is caused by Clostridium perfringens. This is the first report on the use of an intestinal epithelial chicken cell line (CHIC-8E11) to study the pathogenic traits of C. perfringens and to investigate the mode of action of cell-free supernatants (CFS) from probiotic Lactobacillus acidophilus AG01 and Bifidobacterium animalis subsp. lactis AG02 in reducing the pathogenicity of C. perfringens. The cell adhesion, permeability and cytotoxicity were assessed under challenge with four C. perfringens strains isolated from broiler NE episodes of differing geographical origin (CP1-UK; CP10-Sweden; 25037-CP01 and CP22-USA). All the C. perfringens strains could adhere to the CHIC-8E11 cells, with varying affinity (0.05-0.48% adhesion across the strains). The CFS from one out of two strains (CP22) increased the cell permeability (+4.5-fold vs. the control, p < 0.01), as measured by the fluorescein isothiocyanate-dextran (FD4) content, with NetB toxin implicated in this effect. The CFS from all the strains was cytotoxic against the CHIC-8E11 cells in a dose- and strain-dependent manner (cytotoxicity 23-62% across the strains when dosed at 50 µL/mL, as assessed by the MTT cell viability assay). Pre-treatment of the cells with CFS from B. animalis subsp. lactis AG02 but not L. acidophilus AG01 reduced the cell adhesion of three out of four C. perfringens strains (by 77-85% vs. the control, p < 0.001) and reduced the negative effect of two NetB-positive strains on the cell permeability. The CFS of both probiotics alleviated the cytotoxicity of all the C. perfringens strains, which was dependent on the dose. The results confirm the suitability of the CHIC-8E11 cell line for the study of host-pathogen cell interactions in the context of NE caused by C. perfringens and reveal a beneficial mode of action of B. animalis subsp. lactis AG02 in reducing C. perfringens cell adhesion and, together with L. acidophilus AG01, in reducing C. perfringens cytotoxicity.
Collapse
Affiliation(s)
- Darshana Kadekar
- Gut Immunology Lab, R&D, Health & Biosciences, IFF, 8220 Brabrand, Denmark (A.C.U.)
| | | | - Steffen Yde Bak
- IFF Advanced Analysis, R&D, ET, IFF, 8220 Brabrand, Denmark; (S.Y.B.); (N.C.)
| | - Niels Christensen
- IFF Advanced Analysis, R&D, ET, IFF, 8220 Brabrand, Denmark; (S.Y.B.); (N.C.)
| | - Kirsty Gibbs
- Danisco Animal Nutrition, IFF, 2342 BH Oegstgeest, The Netherlands;
| | - Chong Shen
- Gut Immunology Lab, R&D, Health & Biosciences, IFF, 8220 Brabrand, Denmark (A.C.U.)
| | - Marion Bernardeau
- Danisco Animal Nutrition, IFF, 2342 BH Oegstgeest, The Netherlands;
- Agro-Food Department, Normandy University, UNICAEN, ABTE, 14000 Caen, France
| |
Collapse
|
4
|
Medeot DB, Nilson A, Miazzo RD, Grosso V, Ferrari W, Jofré E, Soltermann A, Peralta MF. Stevia as a natural additive on gut health and cecal microbiota in broilers. Vet Anim Sci 2023; 22:100322. [PMID: 38045012 PMCID: PMC10692954 DOI: 10.1016/j.vas.2023.100322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Abstract
Stevia mash (SM), leaves of Stevia rebaudiana Bertoni plant, is an additive used in poultry that enhances growth and health. Objective: to determine the effect of 1 % SM on productive parameters, gut health, and the cecal microbiome in broilers between the first 15 and 21 days old. One hundred sixty male, 1-day-old broilers (48.5 ± 2.5 g) were divided into Control (C) without SM and Treated (T) with 1 % SM on diet, during 15/21 days. Each subgroup had eight broilers/five repetitions/treatment. At day 15 or 21, all broilers were dissected, Fabricius Bursa and Gut removed and processed for histomorphometry, followed by Villi Height/Crypt Deep (VH/CD) ratio. Conversion Index (CI) was determined. The V3-V4 region of 16S rRNA gene was amplified from DNA obtained from pooled cecal contents and sequenced on Illumina Miseq PE 2 × 250 platform. Sequence processing and taxonomic assignments were performed using the SHAMAN pipeline. Both T groups have better VH/CD Ratios than C groups (p ≤ 0.05). In guts, increased plasmatic and goblet cells number and thicker mucus layer were found in T15 and T21. All groups received SM showed early immunological maturity in Fabricius Bursa. IC was similar between all treatments. Faecalibacterium, Ruminococcus torques group, and Bacteroides were the major genera modulated by SM addition. At 15 and 21 days old, SM exerts a impact on diversity and evenness of the cecal microbiome. Conclusion: SM (1 %) produced early immunologic maturity on Fabricius Bursa, increased intestinal functionality, and modified the microbiota, increasing beneficial microbial genera and microbial diversity.
Collapse
Affiliation(s)
- Daniela B. Medeot
- Laboratorio de Biología Molecular de las Interacciones Planta-Bacteria-Instituto de Biotecnología Ambiental y de Salud (INBIAS)- Universidad Nacional de Rio Cuarto (UNRC)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) UNRC: ruta 36 Km 601-5800-Rio Cuarto, Córdoba, Argentina
| | - Armando Nilson
- Unidad de Investigación Aviar, Producción Avícola, Facultad de Agronomía y Veterinaria-UNRC, Argentina
| | - Raul D. Miazzo
- Unidad de Investigación Aviar, Producción Avícola, Facultad de Agronomía y Veterinaria-UNRC, Argentina
| | - Viviana Grosso
- Laboratorio de Vinculación Tecnológica, Facultad de Ciencias Exactas, Físico-Químicas y Naturales-UNRC, Argentina
| | - Walter Ferrari
- Laboratorio de Biología Molecular de las Interacciones Planta-Bacteria-Instituto de Biotecnología Ambiental y de Salud (INBIAS)- Universidad Nacional de Rio Cuarto (UNRC)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) UNRC: ruta 36 Km 601-5800-Rio Cuarto, Córdoba, Argentina
| | - Edgardo Jofré
- Laboratorio de Biología Molecular de las Interacciones Planta-Bacteria-Instituto de Biotecnología Ambiental y de Salud (INBIAS)- Universidad Nacional de Rio Cuarto (UNRC)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) UNRC: ruta 36 Km 601-5800-Rio Cuarto, Córdoba, Argentina
| | - Arnaldo Soltermann
- Laboratorio de Vinculación Tecnológica, Facultad de Ciencias Exactas, Físico-Químicas y Naturales-UNRC, Argentina
| | - María Fernanda Peralta
- Unidad de Investigación Aviar, Producción Avícola, Facultad de Agronomía y Veterinaria-UNRC, Argentina
| |
Collapse
|
5
|
Effect of Hydrogen Oxide-Induced Oxidative Stress on Bone Formation in the Early Embryonic Development Stage of Chicken. Biomolecules 2023; 13:biom13010154. [PMID: 36671539 PMCID: PMC9855391 DOI: 10.3390/biom13010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
The current study aimed to monitor the impact of H2O2-induced oxidative stress on avian bone formation during the early stage of embryonic development. Fertilized Cobb broiler eggs were divided into five treatment groups and micro-injected with varying concentrations of H2O2, i.e., control (PBS; 0 nM), 10 nM, 30 nM, 100 nM, and 300 nM, on embryonic day 3, with continued incubation thereafter. The treatment concentrations were selected based on the level of lipid peroxidation and the survival rate of embryo. Embryos were collected at 6 h, 24 h, 48 h, and 72 h post-injection. The mRNA expression levels of apoptotic markers, antioxidant enzymes, and early bone formation gene markers were measured. The results showed that the microinjection of H2O2 altered the expression pattern of antioxidant enzymes' mRNA during early embryogenesis and decreased the expression of COL1A2 and COL2A1 at 6 h and 24 h post-injection. Decreased expression of BMP, BGLAP, and RUNX2 was observed 48 h post-injection. Additionally, a shorter embryo length was observed in the 100 nM and 300 nM H2O2 treatment groups 72 h post-injection. In conclusion, H2O2-induced oxidative stress suppressed the expression of bone formation gene markers, with chronic effects on avian embryonic development.
Collapse
|