1
|
Wang T, Ma X, Feng F, Zheng F, Zheng Q, Zhang J, Zhang M, Ma C, Deng J, Guo X, Chu M, La Y, Bao P, Pan H, Liang C, Yan P. Study on Single Nucleotide Polymorphism of LAP3 Gene and Its Correlation with Dairy Quality Traits of Gannan Yak. Foods 2024; 13:2953. [PMID: 39335882 PMCID: PMC11431709 DOI: 10.3390/foods13182953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
This study explored the polymorphism of the leucine aminopeptidase (LAP3) gene and its relationship with milk quality characteristics in Gannan yak. A cohort of 162 Gannan yak was genotyped utilizing the Illumina Yak cGPS 7K BeadChip, and the identified single nucleotide polymorphisms (SNPs) were evaluated for their association with milk protein, casein, lactose, and fat concentrations. The results showed that four SNPs (g.4494G > A, g.5919A > G, g.8033G > C, and g.15,615A > G) in the LAP3 gene exhibited polymorphism with information content values of 0.267, 0.267, 0.293, and 0.114, respectively. All four SNPs were in Hardy-Weinberg equilibrium (p > 0.05). The g.4494G > A and g.5919A > G SNPs were significantly associated with protein content (p < 0.05), with homozygous genotypes showing significantly higher protein content than heterozygous genotypes (p < 0.05). The g.8033G > C SNP was significantly associated with casein content, protein content, non-fat solids, and acidity (p < 0.05), with the CC genotype having significantly higher casein, protein, and non-fat solids content than the GG and GC genotypes (p < 0.05). The g.15,615A > G SNP was significantly associated with average fat globule diameter (p < 0.05). In general, the mutations within the LAP3 gene demonstrated a positive impact on milk quality traits in Gannan yak, with mutated genotypes correlating with enhanced milk quality. These results indicate that the LAP3 gene could be a significant or candidate gene affecting milk quality traits in Gannan yak and offer potential genetic markers for molecular breeding programs in this species.
Collapse
Affiliation(s)
- Tong Wang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Xiaoming Ma
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Fen Feng
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Fei Zheng
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730124, China
| | - Qingbo Zheng
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Juanxiang Zhang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Minghao Zhang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Chaofan Ma
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730124, China
| | - Jingying Deng
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Yongfu La
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Heping Pan
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730124, China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 931100, China
| |
Collapse
|
2
|
Yang G, Dai R, Ma X, Huang C, Ma X, Li X, La Y, Dingkao R, Renqing J, Guo X, Zhaxi T, Liang C. Proteomic Analysis Reveals the Effects of Different Dietary Protein Levels on Growth and Development of Jersey-Yak. Animals (Basel) 2024; 14:406. [PMID: 38338049 PMCID: PMC10854544 DOI: 10.3390/ani14030406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/09/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Jersey-yak is a hybrid offspring of Jersey cattle and yak (Bos grunniens). Changing the feeding system of Jersey-yak can significantly improve its growth performance. In this study, tandem mass tag (TMT) proteomics technology was used to determine the differentially expressed proteins (DEPs) of the longissimus lumborum (LL) muscle of Jersey-yak fed different protein levels of diet. The results showed that compared with the traditional grazing feeding, the growth performance of Jersey-yaks was significantly improved by crude protein supplementation after grazing. A total of 3368 proteins were detected in these muscle samples, of which 3365 were quantified. A total of 434 DEPs were identified. Through analyses, it was found that some pathways related to muscle growth and development were significantly enriched, such as Rap1 signaling pathway, mTOR signaling pathway, and TGF-beta signaling pathway. A number of DEPs enriched in these pathways are related to muscle cell development, differentiation, and muscle development, including integrin subunit alpha 7 (ITGA7), myosin heavy chain 8 (MYH8), and collagen type XII alpha 1 chain (COL12A1). In conclusion, the results of this study provide insights into the proteomics of different feeding patterns of Jersey-yak, providing a stronger basis for further understanding the biological mechanism of hybrid varieties.
Collapse
Affiliation(s)
- Guowu Yang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (G.Y.); (R.D.); (X.M.); (C.H.); (X.M.); (X.L.); (Y.L.); (X.G.)
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou 730106, China
| | - Rongfeng Dai
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (G.Y.); (R.D.); (X.M.); (C.H.); (X.M.); (X.L.); (Y.L.); (X.G.)
| | - Xiaoming Ma
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (G.Y.); (R.D.); (X.M.); (C.H.); (X.M.); (X.L.); (Y.L.); (X.G.)
| | - Chun Huang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (G.Y.); (R.D.); (X.M.); (C.H.); (X.M.); (X.L.); (Y.L.); (X.G.)
| | - Xiaoyong Ma
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (G.Y.); (R.D.); (X.M.); (C.H.); (X.M.); (X.L.); (Y.L.); (X.G.)
| | - Xinyi Li
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (G.Y.); (R.D.); (X.M.); (C.H.); (X.M.); (X.L.); (Y.L.); (X.G.)
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou 730106, China
| | - Yongfu La
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (G.Y.); (R.D.); (X.M.); (C.H.); (X.M.); (X.L.); (Y.L.); (X.G.)
| | - Renqing Dingkao
- Animal Husbandry Station, Gannan Tibetan Autonomous Prefecture, Hezuo 747099, China;
| | - Ji Renqing
- Zogemanma Town Animal Husbandry and Veterinary Station, Hezuo 747003, China;
| | - Xian Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (G.Y.); (R.D.); (X.M.); (C.H.); (X.M.); (X.L.); (Y.L.); (X.G.)
| | - Ta Zhaxi
- Qilian County Animal Husbandry Veterinary Workstation, Haibei Prefecture, Qilian 810400, China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (G.Y.); (R.D.); (X.M.); (C.H.); (X.M.); (X.L.); (Y.L.); (X.G.)
| |
Collapse
|
3
|
Shi L, Hu M, Lai W, Yi W, Liu Z, Sun H, Li F, Yan S. Detection of genomic variations and selection signatures in Wagyu using whole-genome sequencing data. Anim Genet 2023; 54:808-812. [PMID: 37792466 DOI: 10.1111/age.13364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/28/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023]
Abstract
Wagyu is recognized for producing marbled beef with high nutritional value and flavor. Reportedly, Wagyu has been widely used to improve the meat quality of local breeds around the world. However, studies on the genetic mechanism of meat quality in Wagyu at the whole-genome level are rarely reported. Here, whole-genome sequencing data of 11 Wagyu and 115 other individuals were used to explore the genomic variations and genes under selection pressure in Wagyu. A total of 31 349 non-synonymous variants and 53 102 synonymous variants were identified in Wagyu. The population structure analysis showed that Wagyu had the closest genetic relationship with Mishima-Ushi cattle and was apparently separated from other cattle breeds. Then, composite likelihood ratio (CLR), integrated haplotype score, fixation index and cross-population composite likelihood ratio (XP-CLR) tests were performed to identify the candidate genes under positive selection in Wagyu. In total, 770 regions containing 312 genes were identified by at least three methods. Among them, 97 regions containing 27 genes were detected by all four methods. We specifically illustrate a list of interesting genes, including LRP2BP, GAA, CACNG6, CXADR, GPCPD1, KLF2, KLF13, SOX5, MYBPC1, SLC25A10, ATP8A1 and MYH15, which are associated with lipid metabolism, fat deposition, muscle development, bone development, feed intake and growth traits in Wagyu. This is the first study to explore the genomic variations and selection signatures of Wagyu at the whole-genome level. These results will provide significant help to beef cattle improvement and breeding.
Collapse
Affiliation(s)
- Lulu Shi
- College of Animal Science, Jilin University, Changchun, China
| | - Mingyue Hu
- College of Animal Science, Jilin University, Changchun, China
| | - Weining Lai
- College of Animal Science, Jilin University, Changchun, China
| | - Wenfeng Yi
- College of Animal Science, Jilin University, Changchun, China
| | - Zhengxi Liu
- College of Animal Science, Jilin University, Changchun, China
| | - Hao Sun
- College of Animal Science, Jilin University, Changchun, China
| | - Feng Li
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Shouqing Yan
- College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
4
|
Yang G, Zhang J, Ma X, Ma R, Shen J, Liu M, Yu D, Feng F, Huang C, Ma X, La Y, Guo X, Yan P, Liang C. Polymorphisms of CCSER1 Gene and Their Correlation with Milk Quality Traits in Gannan Yak ( Bos grunniens). Foods 2023; 12:4318. [PMID: 38231770 DOI: 10.3390/foods12234318] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024] Open
Abstract
Coiled-coil serine-rich protein 1 (CCSER 1) gene is a regulatory protein gene. This gene has been reported to be associated with various economic traits in large mammals in recent years. The aim of this study was to investigate the association between CCSER1 gene single nucleotide polymorphisms (SNPs) and Gannan yaks and to identify potential molecular marker loci for breeding milk quality in Gannan yaks. We genotyped 172 Gannan yaks using Illumina Yak cGPS 7K liquid microarrays and analyzed the correlation between the three SNPs loci of the CCSER1 gene and the milk qualities of Gannan yaks, including milk fat, protein and casein. It was found that mutations at the g.183,843A>G, g.222,717C>G and g.388,723G>T loci all affected the fat, protein, casein and lactose traits of Gannan yak milk to varying extents, and that the milk quality of individuals with mutant phenotypes was significantly improved. Among them, the milk fat content of AG heterozygous genotype population at g.183,843A>G locus was significantly higher than that of AA and GG genotype populations (p < 0.05); the casein and protein content of mutant GG and CG genotype populations at g.222,717C>G locus was significantly higher than that of wild-type CC genotype population (p < 0.05); and the g.388,723G>T locus of the casein and protein contents of the mutant TT genotype population were significantly higher (p < 0.05) than those of the wild-type GG genotype population. These results provide potential molecular marker sites for Gannan yak breeding.
Collapse
Affiliation(s)
- Guowu Yang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou 730106, China
| | - Juanxiang Zhang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xiaoyong Ma
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Rong Ma
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jinwei Shen
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Modian Liu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Daoning Yu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- College of Life Sciences and Engineering, Northwest Minzu University, Lanzhou 730106, China
| | - Fen Feng
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chun Huang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xiaoming Ma
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Yongfu La
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Ping Yan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| |
Collapse
|
5
|
Yang G, Zhang J, Dai R, Ma X, Huang C, Ren W, Ma X, Lu J, Zhao X, Renqing J, Zha L, Guo X, Chu M, La Y, Bao P, Liang C. Comparative Study on Nutritional Characteristics and Volatile Flavor Substances of Yak Milk in Different Regions of Gannan. Foods 2023; 12:foods12112172. [PMID: 37297417 DOI: 10.3390/foods12112172] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
This study aimed to investigate the nutritional properties of yak milk in various areas of Gannan. The milk composition analyzer, automatic amino acid analyzer, and flavor analyzer were used to detect the conventional nutrients, amino acids, and volatile flavor substances of 249 yak milks in Meiren grassland, Xiahe grassland, and Maqu grassland (hereinafter referred to as Meiren yak, Xiahe yak, and Maqu yak) in the Gannan area. The results showed that the fat content of Meiren yak milk was significantly higher than that of Maqu yak and Xiahe yak (p < 0.05). The protein content of Meiren yak milk was significantly higher than that of Xiahe yak (p < 0.05), but not significantly different from that of Maqu yak (p > 0.05). The casein content in the milk of Maqu yak was significantly higher than that of Meiren yak and Xiahe yak (p < 0.05). There was no significant difference in the lactose content of yak milk in the three regions (p > 0.05). The content of glutamic acid in the milk of Meiren yak, Xiahe yak, and Maqu yak was noticeably high, which was 1.03 g/100 g, 1.07 g/100 g, and 1.10 g/100 g, respectively. The total amino acid (TAA) content was 4.78 g/100 g, 4.87 g/100 g, and 5.0 g/100 g, respectively. The ratios of essential amino acids (EAA) and total amino acids (TAA) in the milk of Meiren yak, Xiahe yak, and Maqu yak were 42.26%, 41.27%, and 41.39%, respectively, and the ratios of essential amino acids (EAA) and nonessential amino acids (NEAA) were 73.19%, 70.28%, and 70.61%, respectively. In the yak milk samples collected from three different regions, a total of 34 volatile flavor compounds were detected, including 10 aldehydes, five esters, six ketones, four alcohols, two acids, and seven others. The main flavor substances qualitatively obtained from Meiren yak milk were ethyl acetate, n-valeraldehyde, acetic acid, heptanal, and n-hexanal. Xiahe yak milk mainly contains ethyl acetate, isoamyl alcohol, n-valeraldehyde, heptanal, and ethyl butyrate. Maqu yak milk mainly contains ethyl acetate, n-valeraldehyde, isoamyl alcohol, heptanal, ethyl butyrate, and n-hexanal. Principal component analysis showed that the flavor difference between Xiahe yak and Maqu yak was small, while the flavor difference between Xiahe yak, Maqu yak, and Meiren yak was large. The findings of this research can serve as a foundation for the future advancement and application of yak milk.
Collapse
Affiliation(s)
- Guowu Yang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Juanxiang Zhang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Rongfeng Dai
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Xiaoyong Ma
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Chun Huang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Wenwen Ren
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Xiaoming Ma
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Jianwei Lu
- Zogaidoma Township Animal Husbandry Station of Hezuo City, Hezuo 747003, China
| | - Xue Zhao
- Quality and Safety Inspection Center of Agricultural and Livestock Products in Hezuo, Hezuo 747099, China
| | - Ji Renqing
- Zogemanma Town Animal Husbandry and Veterinary Station, Hezuo 747099, China
| | - Lao Zha
- Zogaidoma Township Animal Husbandry Station of Hezuo City, Hezuo 747003, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Yongfu La
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| |
Collapse
|
6
|
Meng G, La Y, Bao Q, Wu X, Ma X, Huang C, Chu M, Liang C, Yan P. Early Growth and Development and Nonlinear Model Fitting Analysis of Ashidan Yak. Animals (Basel) 2023; 13:ani13091545. [PMID: 37174583 PMCID: PMC10177478 DOI: 10.3390/ani13091545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Understanding animal growth plays an important role in improving animal genetics and breeding. In order to explore the early growth and development law of Ashidan yak, the body weight (BW), wither height (WH), body oblique length (BL) and chest girth (CG) of 260 female Ashidan yaks were measured. These individuals grew under grazing conditions, and growth traits were measured at 6, 12, 18 and 30 months of age. Then the absolute growth and relative growth of Ashidan yak were calculated, and five nonlinear models (Logistic model, Gompertz model, Brody model, von Bertalanffy model and Richards model) were used to fit the growth curve of Ashidan yak. The fitting effect of the model was evaluated according to MSE, AIC and BIC. The results showed that the growth rate of Ashidan yak was the fastest from 12 to 18 months old, and the growth was slow or even stagnant from 6 to 12 months old. The AIC and BIC values of the Richards model were the lowest among the five models, with an AIC value of 4543.98 and a BIC value of 4563.19. The Richards model estimated body weight at 155.642 kg. In summary, the growth rate of female Ashidan yak changes with the seasons, growing faster in warm seasons and slower in cold seasons. Richards model is the best model to describe the growth curve of female Ashidan yak in five nonlinear models.
Collapse
Affiliation(s)
- Guangyao Meng
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yongfu La
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Qi Bao
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xiaoyun Wu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xiaoming Ma
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Chun Huang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Min Chu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Chunnian Liang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Ping Yan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| |
Collapse
|
7
|
Analysis of Copy Number Variation in the Whole Genome of Normal-Haired and Long-Haired Tianzhu White Yaks. Genes (Basel) 2022; 13:genes13122405. [PMID: 36553672 PMCID: PMC9777850 DOI: 10.3390/genes13122405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Long-haired individuals in the Tianzhu white yak population are a unique genetic resource, and have important landscape value. Copy number variation (CNV) is an important source of phenotypic variation in mammals. In this study, we used resequencing technology to detect the whole genome of 10 long-haired Tianzhu white yaks (LTWY) and 10 normal-haired Tianzhu white yaks (NTWY), and analyzed the differences of CNV in the genome of LTWYs and NTWYs. A total of 110268 CNVs were identified, 2006 CNVRs were defined, and the distribution map of these CNVRs on chromosomes was constructed. The comparison of LTWYs and NTWYs identified 80 differential CNVR-harbored genes, which were enriched in lipid metabolism, cell migration and other functions. Notably, some differential genes were identified as associated with hair growth and hair-follicle development (e.g., ASTN2, ATM, COL22A1, GK5, SLIT3, PM20D1, and SGCZ). In general, we present the first genome-wide analysis of CNV in LTWYs and NTWYs. Our results can provide new insights into the phenotypic variation of different hair lengths in Tianzhu white yaks.
Collapse
|