1
|
Chen Y, Li T, Jiang L, Huang Z, Zhang W, Luo Y. The composition, extraction, functional property, quality, and health benefits of coconut protein: A review. Int J Biol Macromol 2024; 280:135905. [PMID: 39332551 DOI: 10.1016/j.ijbiomac.2024.135905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
Coconut is widely appreciated for its distinctive flavor and is commonly utilized in the production of a variety of goods. Coconut protein, a by-product derived from coconut oil and coconut milk cake, is frequently underutilized or discarded. This study provides a comprehensive overview of the distribution and composition of coconut protein. Analyses reveal that coconut protein, specifically 11S globulin and 7S globulin, is predominantly found in coconut flesh. Furthermore, various extraction techniques for coconut protein, such as chemical, enzymatic, and physical methods, are discussed. The alkali dissolution and acid precipitation methods are widely utilized for extracting coconut protein, with the potential for enhancement through the incorporation of physical methods such as ultrasound. The evaluation of functional properties, quality, and health benefits of coconut protein is essential, given the limitations imposed by its solubility. Modification may be necessary to optimize its functional properties. Coconut presents a promising source of food protein, characterized by balanced amino acid composition, high digestibility, and low allergenic potential. In conclusion, this study provides a comprehensive overview of the extraction methods, functional properties, quality, and nutritional benefits of coconut protein, offering insights for potential future research directions in the field. Additionally, the information presented may serve as a valuable reference for incorporating coconut protein into plant-based food products.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States of America
| | - Tong Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lianzhou Jiang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhaoxian Huang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Weimin Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou 570228, China.
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States of America.
| |
Collapse
|
2
|
Lu Y, Zhang Y, Wang S. From Palm to Plate: Unveiling the Potential of Coconut as a Plant-Based Food Alternative. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15058-15076. [PMID: 38920018 DOI: 10.1021/acs.jafc.3c09838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
This review investigates coconut as a sustainable and nutrient-rich plant-based alternative to traditional animal-based food sources. We have explored the nutritional profile, culinary versatility, particularly focusing on the use of coconut meat, milk, cream, and oil in diverse dietary contexts when consumed in balance. Comparative analysis with animal-derived products reveals the high content of medium-chain triglycerides (MCTs), essential vitamins, and minerals in coconut, contrasted with its lower protein content. Researchers have underscored the environmental sustainability of coconut, advocating for its role in eco-friendly food production chains. We have also addressed challenges like potential allergies, nutritional balance, sensory attributes, and consumer motivations for coconut-based products, in terms of understanding the market dynamics. In conclusion, this review positions coconut as a promising candidate within sustainable diet frameworks, advocating for further research to augment its nutritional value, sensory characteristics, and product stability, thereby facilitating its integration into health-conscious and eco-centric dietary practices.
Collapse
Affiliation(s)
- Yingshuang Lu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
3
|
Daszkiewicz T, Michalak M, Śmiecińska K. A comparison of the quality of plain yogurt and its analog made from coconut flesh extract. J Dairy Sci 2024; 107:3389-3399. [PMID: 38135040 DOI: 10.3168/jds.2023-24060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
The aim of this study was to compare the quality of plain yogurt made from cow milk (n = 10) and its plant-based analog made from coconut flesh extract (n = 14). Coconut yogurt alternatives were divided into 2 experimental groups based on differences in their color, which were noted after the packages had been opened. The first group included products with a typical white color (n = 8), and the second group comprised products with a grayish pink color (n = 6) that developed as a result of oxidative processes. In comparison with its plant-based analog, plain yogurt was characterized by higher values of lightness (L*), yellowness (b*) and chroma (C*), higher titratable acidity, a higher content of retinol and α-tocopherol, higher nutritional value of fat, and lower values of water-holding capacity (WHC) and redness (a*). Plain yogurt had lower volatile acidity than its plant-based analog with a grayish pink color. A comparison of yogurt analogs with different colors revealed that the product with a grayish pink color was characterized by a lower value of L*, and higher values of a*, b*, C*, and pH. An analysis of its fatty acid profile demonstrated that it also had a higher proportion of C14:0 and C18:1 cis-9; higher total monounsaturated fatty acids content; a lower proportion of C10:0, C12:0, and C18:2; a lower total content of polyunsaturated fatty acids (PUFA) and essential fatty acids; and a lower ratio of PUFA to saturated fatty acids. The yogurt analog with a grayish pink color had a lower total content of tocopherol isoforms than the remaining products. The yogurt analog with a white color had the highest WHC and γ-tocopherol content. Consumers should be aware of the fact that coconut yogurt alternatives may have nonstandard quality attributes. The differences between such products and yogurt made from cow milk should be explicitly communicated to consumers so that they could make informed purchasing decisions.
Collapse
Affiliation(s)
- T Daszkiewicz
- Department of Commodity Science and Processing of Animal Raw Materials, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland.
| | - M Michalak
- Department of Commodity Science and Processing of Animal Raw Materials, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - K Śmiecińska
- Department of Commodity Science and Processing of Animal Raw Materials, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| |
Collapse
|
4
|
Kabir MA, Nandi SK, Suma AY, Abdul Kari Z, Mohamad Sukri SA, Wei LS, Al Mamun A, Seguin P, Herault M, Khoo MI, Téllez-Isaías G. The Potential of Fish Protein Hydrolysate Supplementation in Nile Tilapia Diets: Effects on Growth and Health Performance, Disease Resistance, and Farm Economic Analysis. Appl Biochem Biotechnol 2024:10.1007/s12010-024-04913-7. [PMID: 38489116 DOI: 10.1007/s12010-024-04913-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
Fish protein hydrolysate (FPH) has shown immense potential as a dietary protein supplement and immunostimulant in aquaculture, especially in Nile tilapia production. Four isoproteic diets (30% crude protein) were prepared by including FPH at varying percentages (0%, 0.5%, 1%, and 2%). Nile tilapia fed with FPH diets for 90 days, and their growth performance, feed utilization, blood biochemistry, liver and gut morphology, and resistance against Streptococcus iniae were investigated. The findings revealed that diets physical attributes such as pellet durability index and water stability were remarkably (p < 0.05) varied between experimental diet groups. Furthermore, the test diets were more palatable when FPH was included at 1% and 2%. Fish that were fed with a 2% FPH-treated diet had significantly (p < 0.05) greater growth indices than other treatments. Additionally, their feed utilization was significantly (p < 0.05) improved. The experimental diets and intestinal total bacteria count (TBC) exhibited a rising trend with FPH levels, where the 2% FPH-treated diet recorded the highest TBC. Neutrophil (109/L), lymphocyte (109/L), eosinophil (109/L), and red blood cell(1012/L) counts were significantly (p < 0.05) higher in the 2% FPH-treated group, while the white blood cell (109/L), and basophil (109/L) counts were not influenced by the FPH inclusion. Moreover, the FPH-treated groups displayed lower creatinine, bilirubin, and urea levels than the control. The histological examination demonstrated that themid-intestine of 2% FPH-fed Nile tilapia had an unbroken epithelial wall, more villi with frequent distribution of goblet cells, wider tunica muscularis, and stronger stratum compactum bonding than other treatments. Additionally, this group exhibited more nuclei and erythrocytes and less vacuolar cytoplasm in liver than their counterparts. Nile tilapia that were given a diet containing 2% FPH had significantly (p < 0.05) higher resistance (83.33%) to S. iniae during the bacterial challenge test. A significant (p < 0.05) enhancement in farm economic efficiency was observed in the higher inclusion of FPH in diets. In summary, 2% FPH supplementation in Nile tilapia diets improved their growth performance, feed utilization, health status, disease resistance, and farm economic efficiency.
Collapse
Affiliation(s)
- Muhammad Anamul Kabir
- Department of Aquaculture, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli, Kelantan, 17600, Malaysia.
| | - Shishir Kumar Nandi
- Department of Aquaculture, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Afrina Yeasmin Suma
- Department of Aquaculture, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli, Kelantan, 17600, Malaysia.
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli, Kelantan, 17600, Malaysia.
| | - Suniza Anis Mohamad Sukri
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli, Kelantan, 17600, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli, Kelantan, 17600, Malaysia
| | - Lee Seong Wei
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli, Kelantan, 17600, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli, Kelantan, 17600, Malaysia
| | - Abdullah Al Mamun
- Department of Fish Health Management, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Paul Seguin
- Symrise Aqua Feed of Taste, Nutrition & Health Segment of the Symrise AG group, Clichy, 92110, France
| | - Mikael Herault
- Symrise Aqua Feed of Taste, Nutrition & Health Segment of the Symrise AG group, Clichy, 92110, France
| | - Martina Irwan Khoo
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kubang Kerian, Kelantan, Malaysia
| | | |
Collapse
|
5
|
Latif NHA, Brosse N, Ziegler-Devin I, Chrusiel L, Hashim R, Hussin MH. Structural characterization of modified coconut husk lignin via steam explosion pretreatment as a renewable phenol substitutes. Int J Biol Macromol 2023; 253:127210. [PMID: 37797852 DOI: 10.1016/j.ijbiomac.2023.127210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/10/2023] [Accepted: 10/01/2023] [Indexed: 10/07/2023]
Abstract
The effects of steam explosion (SE) pretreatment on the structural properties of lignin isolated from coconut husk (CH) biomass via soda pulping were investigated in this work. The isolated SE lignin was classified as dilute acid impregnation SE lignin (ASEL), water impregnation SE lignin (WSEL), and 2-naphthol impregnation SE lignin (NSEL). The various types of functional groups isolated from SE lignin were characterized and compared using a variety of complementary analyses: FTIR spectroscopy, NMR spectroscopy, GPC chromatography, HPAEC-PAD chromatography and thermal analyses. It was revealed that ASEL has the highest solid recovery with 55.89 % yield as well as the highest sugars content compared to WSEL (45.66 % yield) and NSEL (49.37 % yield). Besides, all isolated SE lignin contain a significant quantity of non-condensed G-type and S-type units but less amount of H-type units as supported by previous research. The SE lignin produced lignin with higher molecular weight (Mw ASEL: 72725 g mol-1 > Mw WSEL: 13112 g mol-1 > Mw NSEL: 6891 g mol-1) seems to influence the success of the synthesis reaction of phenolic resins. Because of the large variances in the physicochemical properties of SE lignin polymers, their structural properties were increased toward numerous alternative techniques in lignin-based applications.
Collapse
Affiliation(s)
- Nur Hanis Abd Latif
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Malaysia
| | - Nicolas Brosse
- Laboratoire d'Etude et de Recherche sur le MAteriau Bois (LERMAB), Faculte des Sciences et Technologies, Universite de Lorraine, Vandoeuvre-les-Nancy, France
| | - Isabelle Ziegler-Devin
- Laboratoire d'Etude et de Recherche sur le MAteriau Bois (LERMAB), Faculte des Sciences et Technologies, Universite de Lorraine, Vandoeuvre-les-Nancy, France
| | - Laurent Chrusiel
- Laboratoire d'Etude et de Recherche sur le MAteriau Bois (LERMAB), Faculte des Sciences et Technologies, Universite de Lorraine, Vandoeuvre-les-Nancy, France
| | - Rokiah Hashim
- School of Technology Industrial, Universiti Sains Malaysia, 11800 Minden, Malaysia
| | - M Hazwan Hussin
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Malaysia.
| |
Collapse
|
6
|
G P, Pandiar D, Shanmugam R, Poothakulath Krishnan R. An In Vitro Evaluation of Anti-inflammatory and Antioxidant Activities of Cocos nucifera and Triticum aestivum Formulation. Cureus 2023; 15:e48649. [PMID: 38090429 PMCID: PMC10711346 DOI: 10.7759/cureus.48649] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/11/2023] [Indexed: 04/05/2024] Open
Abstract
Background Medicinal plants are traditionally used in Ayurveda, Unani medicine, and Siddha as primary sources of drugs, and mankind has exploited the therapeutic properties of these herbs throughout history. Coconut (Cocos nucifera), a common ingredient of Indian sub-continental cuisine, has been proven to possess various medicinal properties; similarly, wheatgrass (Triticum aestivum) is of greater medicinal value and is known as the powerhouse of nutrients and vitamins. These have been used individually, but there is limited data on the synergistic use of these products. Thus, the present in vitro study was designed to prepare an oral gel from the extract of C. nucifera and T. aestivum and to assess its cumulative anti-inflammatory and antioxidant activity. Materials and methods C. nucifera extract and T. aestivum extract were prepared separately, and gel formulation was done. The formulated gel was tested for its anti-inflammatory and antioxidant activity. Results The results of the present study demonstrated that the anti-inflammatory property of the gel formulation was greater as compared to the standard (diclofenac), with the highest percentage of inhibition of 90.1% at 50 μl. With regard to the antioxidant property, we found that it was comparable to the standard (ascorbic acid) at various concentrations, with greater activity at 50 μl. Conclusion The oral gel formulation of coconut (C. nucifera) and wheatgrass (T. aestivum) showed better anti-inflammatory and a comparable antioxidant activity. Thus, this formulation may be employed as an adjunct to the commercially available oral gel preparations.
Collapse
Affiliation(s)
- Priyadharshini G
- Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Deepak Pandiar
- Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Rajeshkumar Shanmugam
- Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Reshma Poothakulath Krishnan
- Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
7
|
Zyoud S’H, Shakhshir M, Abushanab AS, Koni A, Hamdallah M, Al-Jabi SW. Mapping the knowledge structure of a gluten-free diet: a global perspective. TRANSLATIONAL MEDICINE COMMUNICATIONS 2023; 8:18. [DOI: 10.1186/s41231-023-00152-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/30/2023] [Indexed: 12/01/2023]
Abstract
Abstract
Background
A gluten-free diet (GFD) has become one of the most popular eating plans and is essential for managing gluten-related medical conditions, signs, and symptoms. Therefore, we performed a bibliometric analysis of the scientific literature on the GFD to describe the research landscape.
Methods
The Scopus database was searched for publications on the GFD from 1952 to 2021. A bibliometric analysis of the data was performed. VOSviewer software was used to perform visualization analysis, co-occurrence analysis, and publication trends in GFD.
Results
A total of 3,258 publications were retrieved. In terms of publications, Italy (n = 468, 14.36%) led in the number of publications, followed by the USA (n = 398, 12.22%) and Spain (n = 274, 8.41%). The retrieved documents earned an average of 22.89 citations per document, for a total of 74,560 citations. Since 2001, there has been a gradual growth in the number of articles published, going from 23 to more than 370 in 2021. Using the mapping terms in the title/abstract a minimum of 50 times, 291 terms were divided into two main clusters: ‘adherence to a gluten-free diet in celiac disease’ and ‘improvement of the nutritional and sensory quality of gluten-free products.’
Conclusions
Over the past six decades, there has been a growing need for gluten-free bakery products and a noticeable increase in related publications. This study indicates that the “improvement of the nutritional and sensory quality of gluten-free products” will remain a hotspot in this research field for upcoming years.
Collapse
|
8
|
Yousefi K, Abdullah SNA, Hatta MAM, Ling KL. Genomics and Transcriptomics Reveal Genetic Contribution to Population Diversity and Specific Traits in Coconut. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091913. [PMID: 37176970 PMCID: PMC10181077 DOI: 10.3390/plants12091913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023]
Abstract
Coconut is an economically important palm species with a long history of human use. It has applications in various food, nutraceuticals, and cosmetic products, and there has been renewed interest in coconut in recent years due to its unique nutritional and medicinal properties. Unfortunately, the sustainable growth of the coconut industry has been hampered due to a shortage of good quality seedlings. Genetic improvement through the traditional breeding approach faced considerable obstacles due to its perennial nature, protracted juvenile period, and high heterozygosity. Molecular biotechnological tools, including molecular markers and next-generation sequencing (NGS), could expedite genetic improvement efforts in coconut. Researchers have employed various molecular markers to reveal genetic diversity among coconut populations and for the construction of a genetic map for exploitation in coconut breeding programs worldwide. Whole genome sequencing and transcriptomics on the different varieties have generated a massive amount of publicly accessible sequence data, substantially improving the ability to analyze and understand molecular mechanisms affecting crop performance. The production of high-yielding and disease-resilient coconuts and the deciphering of the complex coconut genome's structure can profit tremendously from these technologies. This paper aims to provide a comprehensive review of the progress of coconut research, using genomics, transcriptomics, and molecular markers initiatives.
Collapse
Affiliation(s)
- Kobra Yousefi
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Siti Nor Akmar Abdullah
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Laboratory of Sustainable Agronomy and Crop Protection, Institute of Plantation Studies, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Muhammad Asyraf Md Hatta
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Kong Lih Ling
- Laboratory of Sustainable Agronomy and Crop Protection, Institute of Plantation Studies, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
9
|
Plamada D, Teleky BE, Nemes SA, Mitrea L, Szabo K, Călinoiu LF, Pascuta MS, Varvara RA, Ciont C, Martău GA, Simon E, Barta G, Dulf FV, Vodnar DC, Nitescu M. Plant-Based Dairy Alternatives-A Future Direction to the Milky Way. Foods 2023; 12:foods12091883. [PMID: 37174421 PMCID: PMC10178229 DOI: 10.3390/foods12091883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
One significant food group that is part of our daily diet is the dairy group, and both research and industry are actively involved to meet the increasing requirement for plant-based dairy alternatives (PBDAs). The production tendency of PBDAs is growing with a predictable rate of over 18.5% in 2023 from 7.4% at the moment. A multitude of sources can be used for development such as cereals, pseudocereals, legumes, nuts, and seeds to obtain food products such as vegetal milk, cheese, cream, yogurt, butter, and different sweets, such as ice cream, which have nearly similar nutritional profiles to those of animal-origin products. Increased interest in PBDAs is manifested in groups with special dietary needs (e.g., lactose intolerant individuals, pregnant women, newborns, and the elderly) or with pathologies such as metabolic syndromes, dermatological diseases, and arthritis. In spite of the vast range of production perspectives, certain industrial challenges arise during development, such as processing and preservation technologies. This paper aims at providing an overview of the currently available PBDAs based on recent studies selected from the electronic databases PubMed, Web of Science Core Collection, and Scopus. We found 148 publications regarding PBDAs in correlation with their nutritional and technological aspects, together with the implications in terms of health. Therefore, this review focuses on the relationship between plant-based alternatives for dairy products and the human diet, from the raw material to the final products, including the industrial processes and health-related concerns.
Collapse
Affiliation(s)
- Diana Plamada
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Bernadette-Emőke Teleky
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Silvia Amalia Nemes
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Laura Mitrea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Katalin Szabo
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Lavinia-Florina Călinoiu
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Mihaela Stefana Pascuta
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Rodica-Anita Varvara
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Călina Ciont
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Gheorghe Adrian Martău
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Elemer Simon
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Gabriel Barta
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Francisc Vasile Dulf
- Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Maria Nitescu
- Department of Preclinical-Complementary Sciences, University of Medicine and Pharmacy "Carol Davila", 050474 Bucharest, Romania
- National Institute for Infectious Diseases "Prof. Dr. Matei Bals", 021105 Bucharest, Romania
| |
Collapse
|
10
|
Pineapple waste in animal feed: A review of nutritional potential, impact and prospects. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2022-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Abstract
Pineapple is a commodity and economic fruit with a high market potential worldwide. Almost 60 % of the fresh pineapple, such as peels, pulp, crowns and leaves, are agricultural waste. It is noteworthy that the waste has a high concentration of crude fibre, proteins, ascorbic acid, sugars and moisture content. The pineapple waste utilisation in animal feed has recently drawn the attention of many investigators to enhance growth performance and concomitantly reduce environmental pollution. Its inclusion in animal feed varies according to the livestock, such as feed block, pelleted or directly used as a roughage source for ruminants. The pineapple waste is also fermented to enrich the nutrient content of poultry feed. To date, the inclusion of pineapple waste in animal feed is optimistic only not for livestock but also for farmed fish. Indeed, it is an ideal strategy to improve the feed supply to the farm. This paper aims to overview the source, nutritional composition, and application of pineapple waste in animal feed. The recent findings on its effect on animal growth performance, nutrition and disease control are discussed comprehensively and summarised. The review also covers its benefits, potential impacts on sustainable farming and future perspectives.
Collapse
|
11
|
Nandi SK, Suma AY, Rashid A, Kabir MA, Goh KW, Abdul Kari Z, Van Doan H, Zakaria NNA, Khoo MI, Seong Wei L. The Potential of Fermented Water Spinach Meal as a Fish Meal Replacement and the Impacts on Growth Performance, Reproduction, Blood Biochemistry and Gut Morphology of Female Stinging Catfish ( Heteropneustes fossilis). Life (Basel) 2023; 13:life13010176. [PMID: 36676125 PMCID: PMC9863030 DOI: 10.3390/life13010176] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023] Open
Abstract
The identification and development of a new plant-based feed ingredient as an alternative protein source to FM have gained the interest of the aquafeed industrial players. Therefore, this study aimed to investigate the physical, biochemical, and bacteriological properties of dietary FWM and the impacts on the growth and reproductive performances of farmed female stinging catfish, H. fossilis broodstock. Five experimental diets were formulated with different FWM inclusion (0, 25, 50, 75, and 100%). Fatty acid profiles such as 4:0, 10:0, 20:0, 21:0, 22:0, 24:0, 20:1n9, 18:3n6, 20:3n6, 20:4n6, and 22:6n3 were found in higher levels in FWM compared to the water spinach meal (WM). Meanwhile, there were no significant differences in the physical properties of the FWM experimental diets (p > 0.05). Furthermore, the experimental feed with 0%, 25%, 50%, and 75% FWM were more palatable to the broodstock than 100% FWM. The number of total bacteria (TB) and lactic acid bacteria (LAB) in catfish diets exhibited a rising trend with an increase in FWM, while 50% of FWM-fed fish intestines had a significantly (p < 0.05) higher TB and LAB than other treatment groups. The growth, feed utilization, and reproductive variables of H. fossilis were significantly (p < 0.05) influenced by FWM inclusion at various levels. Moreover, the significantly (p < 0.05) highest oocytes weight, fertilization, egg ripeness, and ovipositor diameter were observed in the treatment of 50% FWM diet treatment group. In addition, the spawning response was 100% in all treatments except for the control group (66.67%). Significant differences (p < 0.05) were found in the hematological and serum biochemical indices in most treatment groups. In addition, the histological analysis of H. fossilis midintestinal tissue indicated that the fish fed with a 50% FWM diet had an unbroken epithelial barrier with more goblet cell arrangements and a well-organized villi structure and tunica muscularis compared to other treatment groups. These outcomes suggested that FWM at 50% inclusion is an adequate protein supplement for fish feed, resulting in better growth, reproductive performance, and health of H. fossilis broodstock development.
Collapse
Affiliation(s)
- Shishir Kumar Nandi
- Department of Aquaculture, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Afrina Yeasmin Suma
- Department of Aquaculture, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Aminur Rashid
- Department of Aquaculture, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Muhammad Anamul Kabir
- Department of Aquaculture, Sylhet Agricultural University, Sylhet 3100, Bangladesh
- Correspondence: (M.A.K.); (K.W.G.); (Z.A.K.)
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
- Correspondence: (M.A.K.); (K.W.G.); (Z.A.K.)
| | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia
- Correspondence: (M.A.K.); (K.W.G.); (Z.A.K.)
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Science and Technology Research Institute, Chiang Mai University, 239 HuayKeaw Rd., Suthep, Muang, Chiang Mai 50200, Thailand
| | - Nik Nur Azwanida Zakaria
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia
- Department of Agro-Based Industry, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia
| | - Martina Irwan Khoo
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia
| | - Lee Seong Wei
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia
| |
Collapse
|
12
|
Recent Advances, Challenges, Opportunities, Product Development and Sustainability of Main Agricultural Wastes for the Aquaculture Feed Industry – A Review. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2022-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Abstract
Million tonnes of agricultural waste are generated annually worldwide. Agricultural wastes possess similar profiles to the main products but are lower in quality. Managing these agricultural wastes is costly and requires strict regulation to minimise environmental stress. Thus, these by-products could be repurposed for industrial use, such as alternative resources for aquafeed to reduce reliance on fish meal and soybean meal, fertilisers to enrich medium for growing live feed, antimicrobial agents, and immunostimulatory enhancers. Furthermore, utilising agricultural wastes and other products can help mitigate the existing environmental and economic dilemmas. Therefore, transforming these agricultural wastes into valuable products helps sustain the agricultural industry, minimises environmental impacts, and benefits industry players. Aquaculture is an important sector to supply affordable protein sources for billions worldwide. Thus, it is essential to explore inexpensive and sustainable resources to enhance aquaculture production and minimise environmental and public health impacts. Additionally, researchers and farmers need to understand the elements involved in new product development, particularly the production of novel innovations, to provide the highest quality products for consumers. In summary, agriculture waste is a valuable resource for the aquafeed industry that depends on several factors: formulation, costing, supply, feed treatment and nutritional value.
Collapse
|
13
|
Scabicidal Potential of Coconut Seed Extract in Rabbits via Downregulating Inflammatory/Immune Cross Talk: A Comprehensive Phytochemical/GC-MS and In Silico Proof. Antibiotics (Basel) 2022; 12:antibiotics12010043. [PMID: 36671243 PMCID: PMC9854674 DOI: 10.3390/antibiotics12010043] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Scabies is an invasive skin condition caused by Sarcoptes scabiei mites. The present study investigates the antiscabies potential of coconut seed extract (CSE) in rabbits. GC-MS analysis of the seed oil identified 17 known compounds, while CSE phytochemical investigation afforded 4 known ones. The topical application of seed extract improved all signs of infection, and the improvement started 3 days post application. However, in vitro application of the extract caused 99% mortality of mites 1 day post application. Histopathological examination revealed the absence of inflammatory infiltration and hyperkeratosis of the epidermis, compared with ivermectin-treated groups which revealed less improvement. The mRNA gene expression results revealed a suppression of IL-1β, IL-6, IL-10, MMP-9, VEGF, and MCP-1, and an upregulation of I-CAM-1, KGF as well as TIMP-1. The docking analysis emphasized a strong binding of gondoic acid with IL-1β, IL-6, and VEGF with high binding scores of -5.817, -5.291, and -8.362 kcal/mol, respectively, and a high binding affinity of 3″(1‴-O-β-D-glucopyranosyl)-sucrose with GST with -7.24 kcal/mol. Accordingly, and for the first time, our results highlighted the scabicidal potential of coconut seed extract, which opens the gate for an efficient, cost-effective as well as herbal-based alternative for the control of scabies in rabbits.
Collapse
|
14
|
Saikhwan P, Somana J, Konkamdee W. Fouling mechanisms of coconut milk foulants formed during pasteurization. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|