1
|
Pavlova SV, Romanenko SA, Matveevsky SN, Kuksin AN, Dvoyashov IA, Kovalskaya YM, Proskuryakova AA, Serdyukova NA, Petrova TV. Supernumerary Chromosomes Enhance Karyotypic Diversification of Narrow-Headed Voles of the Subgenus Stenocranius (Rodentia, Mammalia). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:538-556. [PMID: 39233501 DOI: 10.1002/jez.b.23273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 06/03/2024] [Accepted: 08/14/2024] [Indexed: 09/06/2024]
Abstract
The subgenus Stenocranius contains two cryptic species: Lasiopodomys gregalis (subdivided into three allopatrically distributed and genetically well-isolated lineages A, B, and C) and Lasiopodomys raddei. To identify karyotype characteristics of this poorly studied cryptic species complex, we used comparative cytogenetic analysis of 138 individuals from 41 localities in South Siberia and Mongolia. A detailed description of the L. raddei karyotype and of the L. gregalis lineage С karyotype is presented for the first time. The A chromosome complement of all examined narrow-headed voles consisted of 2n = 36 and a fundamental number of autosomal arms (FNa) of 50. Between species, patterns of differential staining were similar, though additional C-heterochromatic blocks were found in L. gregalis lineages; Ag-positive nucleolar organizers and ribosomal DNA (rDNA) clusters are located on eight and nine acrocentric pairs, respectively. No B chromosomes (Bs) were found in the Early Pleistocene relic L. raddei, while one to five small heterochromatic acrocentric Bs were detected in all L. gregalis lineages; the number and frequency of Bs varied considerably within lineages, but no intraindividual variation was observed. In both species, telomeric repeats were visualized at termini of all chromosomes, including Bs. The number and localization of rDNA clusters on Bs varied among B-carriers. Immunodetection of several meiotic proteins indicated that meio-Bs are transcriptionally inactive and have a pattern of meiotic behavior similar to that of sex chromosomes (some homology of Bs to sex chromosomes is supposed). The nature, mechanisms of inheritance and stability of Bs in L. gregalis require further investigation.
Collapse
Affiliation(s)
- Svetlana V Pavlova
- Laboratory of Population Ecology, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Svetlana A Romanenko
- Laboratory of Animal Cytogenetics, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey N Matveevsky
- Cytogenetics Laboratory, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Aleksander N Kuksin
- Laboratory of Biodiversity and Geoecology, Tuvinian Institute for Exploration of Natural Resources, Siberian Branch of the Russian Academy of Sciences, Kyzyl, Russia
| | - Ivan A Dvoyashov
- Laboratory of Evolutionary Genomics and Paleogenomics, Zoological Institute, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Yulia M Kovalskaya
- Laboratory of Behaviour and Behavioral Ecology of Mammals, A. N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Anastasiya A Proskuryakova
- Laboratory of Animal Cytogenetics, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Natalia A Serdyukova
- Laboratory of Animal Cytogenetics, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Tatyana V Petrova
- Laboratory of Evolutionary Genomics and Paleogenomics, Zoological Institute, Russian Academy of Sciences, Saint-Petersburg, Russia
| |
Collapse
|
2
|
Silva M, Mazzoni Zerbinato Andrade Silva D, Castro JP, Makunin AI, Barby FF, de Oliveira EHC, Liehr T, Cioffi MB, Porto-Foresti F, Foresti F, Artoni RF. Investigation of Astyanax mexicanus (Characiformes, Characidae) chromosome 1 structure reveals unmapped sequences and suggests conserved evolution. PLoS One 2024; 19:e0313896. [PMID: 39556552 PMCID: PMC11573200 DOI: 10.1371/journal.pone.0313896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/01/2024] [Indexed: 11/20/2024] Open
Abstract
Natural selection in the cave habitat has resulted in unique phenotypic traits (including pigmentation loss and ocular degeneration) in the Mexican tetra Astyanax mexicanus, considered a model species for evolutionary research. A. mexicanus has a karyotype of 2n = 50 chromosomes, and long-read sequencing and quantitative trait linkage maps (QTLs) have completely reconstructed the reference genome at the chromosomal level. In the current work, we performed whole chromosome isolation by microdissection and total amplification using DOP-PCR and Whole Chromosome Painting (WCP), followed by sequencing on the Illumina NextSeq platform, to investigate the microstructure of the large and conserved metacentric chromosome 1 of A. mexicanus. The sequences aligned to linkage block 3 of the reference genome, as determined by processing the reads with the DOPseq pipeline and characterizing the satellites with the TAREAN program. In addition, part of the sequences was anchored in linkage blocks that have not yet been assigned to the chromosomes. Furthermore, fluorescence in situ hybridization using WCP 1 carried out in other nearby species revealed a high degree of chromosome conservation, which allows us to hypothesize a common origin of this element. The physical mapping of the repetitive marker sequences provided a micro- and macrostructural overview and confirmed their position in chromosome pair 1. These sequences can serve as comparative tools for understanding the evolution and organization of this chromosome in other species of the family in future studies.
Collapse
Affiliation(s)
- Maelin Silva
- Instituto Latino-Americano de Ciências da Vida, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu, Paraná, Brazil
- Departamento de Biologia Estrutural, Molecular e Genética, Programa de Pós-Graduação em Biologia Evolutiva, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Duílio Mazzoni Zerbinato Andrade Silva
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jonathan Pena Castro
- Departamento de Biologia Estrutural, Molecular e Genética, Programa de Pós-Graduação em Biologia Evolutiva, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Alex I. Makunin
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Felipe Faix Barby
- Programa de Pós-Graduação em Genética Evolutiva e Biologia Molecular, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Edivaldo Herculano Correa de Oliveira
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará e Laboratório de Citogenômica e Mutagênese Ambiental, Seção de Meio Ambiente, Instituto Evandro Chagas, Belém, Pará, Brazil
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Marcelo Bello Cioffi
- Programa de Pós-Graduação em Genética Evolutiva e Biologia Molecular, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Fábio Porto-Foresti
- Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Estadual Paulista - UNESP, Bauru, São Paulo, Brazil
| | - Fausto Foresti
- Departamento de Biologia Estrutural e Funcional, Instituto de Biociências de Botucatu, Universidade Estadual Paulista - UNESP, Bauru, São Paulo, Brazil
| | - Roberto Ferreira Artoni
- Departamento de Biologia Estrutural, Molecular e Genética, Programa de Pós-Graduação em Biologia Evolutiva, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
- Programa de Pós-Graduação em Genética Evolutiva e Biologia Molecular, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| |
Collapse
|
3
|
Vidal MR, Lasmar LF, Nadai PCF, Oliveira C, Silva DMZA, Foresti F. Selecting reference genes for RT-qPCR studies involving the presence of B chromosomes in Psalidodon (Characiformes, Characidae). Mol Biol Rep 2024; 51:977. [PMID: 39259380 DOI: 10.1007/s11033-024-09911-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND B chromosomes are extra non-essential elements present in several eukaryotes. Unlike A chromosomes which are essential and present in all individuals of a species, B chromosomes are not necessary for normal functioning of an organism. Formerly regarded as genetically inactive, B chromosomes have been discovered to not only express their own genes, but also to exert influence on gene expression in A chromosomes. Recent studies have shown that, in some Psalidodon (Characiformes, Characidae) species, B chromosomes might be associated with phenotypic effects, such as changes in the reproductive cycle and gene expression. METHODS AND RESULTS In this study, we aimed to establish stable reference genes for RT-qPCR experiments conducted on gonads of three fish species within Psalidodon genus, both in the presence and absence of B chromosomes. The stability of five selected reference genes was assessed using NormFinder, geNorm, BestKeeper, and RefFinder algorithms. We determined ppiaa and pgk1 as the most stable genes in P. fasciatus, whereas ppiaa and hmbsa showed the highest stability in P. bockmanni. For P. paranae, tbp and hprt1 were the most stable genes in females, and ppiaa and hprt1 were the most stable in males. CONCLUSIONS We determined the most stable reference genes in gonads of three Psalidodon species considering the presence of B chromosomes. This is the first report of reference gene stability in the genus and provides valuable tools to better understand the effects of B chromosomes at gene expression level.
Collapse
Affiliation(s)
- Mateus Rossetto Vidal
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, 18618-970, Brazil.
| | - Lucas F Lasmar
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, 18618-970, Brazil
| | - Pamela C F Nadai
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, 18618-970, Brazil
| | - Claudio Oliveira
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, 18618-970, Brazil
| | - Duilio M Z A Silva
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, 18618-970, Brazil
| | - Fausto Foresti
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, 18618-970, Brazil
| |
Collapse
|
4
|
de Sousa RPC, Furo IDO, Silva-Oliveira GC, de Sousa-Felix RC, Bessa-Brito CD, Mello RC, Sampaio I, Artoni RF, de Oliveira EHC, Vallinoto M. Comparative cytogenetics of microsatellite distribution in two tetra fishes Astyanax bimaculatus (Linnaeus, 1758) and Psalidodon scabripinnis (Jenyns, 1842). PeerJ 2024; 12:e16924. [PMID: 38525285 PMCID: PMC10960527 DOI: 10.7717/peerj.16924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/19/2024] [Indexed: 03/26/2024] Open
Abstract
Background The main cytogenetic studies of the Characidae family comprise the genera Astyanax and Psalidodon involving the use of repetitive DNA probes. However, for the microsatellite classes, studies are still scarce and the function of these sequences in the genome of these individuals is still not understood. Thus, we aimed to analyze and compare the distribution of microsatellite sequences in the species Astyanax bimaculatus and Psalidodon scabripinnis. Methods We collected biopsies from the fins of A. bimaculatus and P. scabripinnis to perform cell culture, followed by chromosome extraction, and mapped the distribution of 14 microsatellites by FISH in both species. Results and Discussion The diploid number observed for both species was 2n = 50, with an acrocentric B microchromosome in A. bimaculatus and a metacentric B chromosome in P. scabripinnis. Regarding FISH, 11 probes hybridized in the karyotype of A. bimaculatus mainly in centromeric regions, and 13 probes hybridized in P. scabripinnis, mainly in telomeric regions, in addition to a large accumulation of microsatellite hybridization on its B chromosome. Conclusion Comparative FISH mapping of 14 microsatellite motifs revealed different patterns of distribution both in autosomes and supernumerary chromosomes of A. bimaculatus and P. scabripinnis, suggesting independent evolutionary processes in each of these species, representing excellent data on chromosome rearrangements and cytotaxonomy.
Collapse
Affiliation(s)
| | | | | | | | | | - Raynara Costa Mello
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Iracilda Sampaio
- Instituto de Estudos Costeiros, Universidade Federal do Pará, Bragança, Pará, Brazil
| | - Roberto Ferreira Artoni
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | - Edivaldo Herculano Corrêa de Oliveira
- Seção do Meio Ambiente, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
- Instituto de Ciências Naturais e Exatas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Marcelo Vallinoto
- Instituto de Estudos Costeiros, Universidade Federal do Pará, Bragança, Pará, Brazil
- Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| |
Collapse
|
5
|
Rajpal VR, Sharma S, Sehgal D, Sharma P, Wadhwa N, Dhakate P, Chandra A, Thakur RK, Deb S, Rama Rao S, Mir BA, Raina SN. Comprehending the dynamism of B chromosomes in their journey towards becoming unselfish. Front Cell Dev Biol 2023; 10:1072716. [PMID: 36684438 PMCID: PMC9846793 DOI: 10.3389/fcell.2022.1072716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Investigated for more than a century now, B chromosomes (Bs) research has come a long way from Bs being considered parasitic or neutral to becoming unselfish and bringing benefits to their hosts. B chromosomes exist as accessory chromosomes along with the standard A chromosomes (As) across eukaryotic taxa. Represented singly or in multiple copies, B chromosomes are largely heterochromatic but also contain euchromatic and organellar segments. Although B chromosomes are derived entities, they follow their species-specific evolutionary pattern. B chromosomes fail to pair with the standard chromosomes during meiosis and vary in their number, size, composition and structure across taxa and ensure their successful transmission through non-mendelian mechanisms like mitotic, pre-meiotic, meiotic or post-meiotic drives, unique non-disjunction, self-pairing or even imparting benefits to the host when they lack drive. B chromosomes have been associated with cellular processes like sex determination, pathogenicity, resistance to pathogens, phenotypic effects, and differential gene expression. With the advancements in B-omics research, novel insights have been gleaned on their functions, some of which have been associated with the regulation of gene expression of A chromosomes through increased expression of miRNAs or differential expression of transposable elements located on them. The next-generation sequencing and emerging technologies will further likely unravel the cellular, molecular and functional behaviour of these enigmatic entities. Amidst the extensive fluidity shown by B chromosomes in their structural and functional attributes, we perceive that the existence and survival of B chromosomes in the populations most likely seem to be a trade-off between the drive efficiency and adaptive significance versus their adverse effects on reproduction.
Collapse
Affiliation(s)
- Vijay Rani Rajpal
- Department of Botany, Hansraj College, University of Delhi, Delhi, India,*Correspondence: Vijay Rani Rajpal, , ; Soom Nath Raina,
| | - Suman Sharma
- Department of Botany, Ramjas College, University of Delhi, Delhi, India
| | - Deepmala Sehgal
- Syngenta, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Prashansa Sharma
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Nikita Wadhwa
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | | | - Atika Chandra
- Department of Botany, Maitreyi College, University of Delhi, New Delhi, India
| | - Rakesh Kr. Thakur
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Sohini Deb
- Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, Meghalaya, India
| | - Satyawada Rama Rao
- Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, Meghalaya, India
| | - Bilal Ahmad Mir
- Department of Botany, University of Kashmir, Srinagar, India
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India,*Correspondence: Vijay Rani Rajpal, , ; Soom Nath Raina,
| |
Collapse
|