1
|
Meng Q, Tang Z, Yang F, Shi J, Liu T, Cheng S. Functional analysis of microorganisms and metabolites in the cecum of different sheep populations and their effects on production traits. Front Microbiol 2024; 15:1437250. [PMID: 39351299 PMCID: PMC11439670 DOI: 10.3389/fmicb.2024.1437250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024] Open
Abstract
The purpose of this study was to investigate the effects of intestinal microbiota on the growth and production performance of different groups of sheep, focusing on the role of cecal microbiota in regulating intestinal function, enhancing digestion and absorption, and improving feed utilization. The production performance of MG × STH (Mongolia × Small Tailed Han) F1 hybrids and purebred STH (Small Tailed Han) sheep by measuring various factors, including enzyme activities and VFAs (volatile fatty acids), to analyze changes in cecal fermentation parameters across different sheep groups. Metagenomic and metabolomic sequencing combined with bioinformatics to analyze the cecal contents of the two sheep populations. The study findings indicated that the MG × STH F1 hybrids outperformed the purebred STH in terms of body weight, height, oblique body length, and VFAs (p < 0.05). Additionally, the MG × STH F1 higher levels of protease and cellulase in the cecum compared to the purebred sheep (p < 0.05). Metagenomic analysis identified 4,034 different microorganisms at the species level. Five differential organisms (Akkermansiaceae bacterium, Escherichia coli, unclassified p Firmicutes, Streptococcus equinus, Methanobrevibacter millerae) positively regulated sheep performance. Metabolomics identified 822 differential metabolites indoleacetaldehyde, 2-aminobenzoic acid, phenyl-Alanine, enol-phenylpyruvate and n-acetylserotonin were associated with improved performance of sheep. The combined results from the metagenomic and metabolomic studies suggest a positive correlation between specific microbes and metabolites and the performance of the sheep. In conclusion, the MG × STH F1 hybrids demonstrated superior growth performance compared to the purebred STH sheep. The identified microorganisms and metabolites have promising roles in positively regulating sheep growth and can be considered key targets for enhancing sheep performance.
Collapse
Affiliation(s)
- Quanlu Meng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- College of Biological and Architectural Engineering, Baoji Vocational and Technical College, Baoji, China
| | - Zhixiong Tang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Feifei Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jinping Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ting Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shuru Cheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
2
|
Mizoguchi Y, Guan LL. - Invited Review - Translational gut microbiome research for strategies to improve beef cattle production sustainability and meat quality. Anim Biosci 2024; 37:346-359. [PMID: 38186252 PMCID: PMC10838664 DOI: 10.5713/ab.23.0387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/06/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024] Open
Abstract
Advanced and innovative breeding and management of meat-producing animals are needed to address the global food security and sustainability challenges. Beef production is an important industry for securing animal protein resources in the world and meat quality significantly contributes to the economic values and human needs. Improvement of cattle feed efficiency has become an urgent task as it can lower the environmental burden of methane gas emissions and the reduce the consumption of human edible cereal grains. Cattle depend on their symbiotic microbiome and its activity in the rumen and gut to maintain growth and health. Recent developments in high-throughput omics analysis (metagenome, metatranscriptome, metabolome, metaproteome and so on) have made it possible to comprehensively analyze microbiome, hosts and their interactions and to define their roles in affecting cattle biology. In this review, we focus on the relationships among gut microbiome and beef meat quality, feed efficiency, methane emission as well as host genetics in beef cattle, aiming to determine the current knowledge gaps for the development of the strategies to improve the sustainability of beef production.
Collapse
Affiliation(s)
- Yasushi Mizoguchi
- School of Agriculture, Meiji University, Tama-ku, Kawasaki, Kanagawa 214-8571,
Japan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5,
Canada
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5,
Canada
- Faculty of Land and Food Systems, the University of British Columbia, Vancouver, British Columbia, V6T 1Z4,
Canada
| |
Collapse
|
3
|
Sun F, Piao M, Zhang X, Zhang S, Wei Z, Liu L, Bu Y, Xu S, Zhao X, Meng X, Yue M. Multi-Omics Analysis of Transcriptomic and Metabolomics Profiles Reveal the Molecular Regulatory Network of Marbling in Early Castrated Holstein Steers. Animals (Basel) 2022; 12:ani12233398. [PMID: 36496924 PMCID: PMC9736081 DOI: 10.3390/ani12233398] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
The intramuscular fat (IMF), or so-called marbling, is known as potential determinant of the high quality beef in China, Korea, and Japan. Of the methods that affect IMF content in cattle, castration is markedly regarded as an effective and economical way to improve the deposition of IMF but with little attention to its multi-omics in early-castrated cattle. The aim of this study was to investigate the liver transcriptome and metabolome of early-castrated Holstein cattle and conduct a comprehensive analysis of two omics associated with the IMF deposition using transcriptomics and untargeted metabolomics under different treatments: non−castrated and slaughtered at 16 months of age (GL16), castrated at birth and slaughtered at 16 months of age (YL16), and castrated at birth and slaughtered at 26 months of age (YL26). The untargeted metabolome was analyzed using ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. The transcriptome of the hepatic genes was analyzed to identify marbling-related genes. Using untargeted metabolomics, the main altered metabolic pathways in the liver of cattle, including those for lipid and amino acid metabolism, were detected in the YL16 group relative to the GL16 and YL26 groups. Significant increases in the presence of betaine, alanine, and glycerol 3-phosphate were observed in the YL16 group (p < 0.05), which might have contributed to the improved beef-marbling production. Compared to the GL16 and YL26 groups, significant increases in the presence of glutathione, acetylcarnitine, and riboflavin but decreases in diethanolamine and 2-hydroxyglutarate were identified in YL16 group (p < 0.05), which might have been beneficial to the beef’s enhanced functional quality. The gene expressions of GLI1 and NUF2 were downregulated and that of CYP3A4 was upregulated in the YL16 group; these results were strongly correlated with the alanine, betaine, and leucine, respectively, in the liver of the cattle. In conclusion, implementation of early castration modified the hepatic metabolites and the related biological pathways by regulating the relevant gene expressions, which could represent a better rearing method for production of high marbled and healthier beef products.
Collapse
Affiliation(s)
- Fang Sun
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Correspondence: ; Tel.: +86-187-4573-8564; Fax: +86-(0)451-8750-2330
| | - Minyu Piao
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinyue Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Siqi Zhang
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Ziheng Wei
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Li Liu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Ye Bu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Shanshan Xu
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Xiaochuan Zhao
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Xiangren Meng
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Mengmeng Yue
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| |
Collapse
|