1
|
Young MW, Webster C, Tanis D, Schurr AF, Hanna CS, Lynch SK, Ratkiewicz AS, Dickinson E, Kong FH, Granatosky MC. What does climbing mean exactly? Assessing spatiotemporal gait characteristics of inclined locomotion in parrots. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:19-33. [PMID: 37140643 DOI: 10.1007/s00359-023-01630-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/20/2023] [Accepted: 04/03/2023] [Indexed: 05/05/2023]
Abstract
At what inclination does climbing begin? In this paper, we investigate the transition from walking to climbing in two species of parrot (Agapornis roseicollis and Nymphicus hollandicus) that are known to incorporate both their tail and their craniocervical system into the gait cycle during vertical climbing. Locomotor behaviors ranging in inclination were observed at angles between 0° and 90° for A. roseicollis, and 45°-85° degrees for N. hollandicus. Use of the tail in both species was observed at 45° inclination, and was joined at higher inclinations (> 65°) by use of the craniocervical system. Additionally, as inclination approached (but remained below) 90°, locomotor speeds were reduced while gaits were characterized by higher duty factors and lower stride frequency. These gait changes are consistent with those thought to increase stability. At 90°, A. roseicollis significantly increased its stride length, resulting in higher overall locomotor speed. Collectively these data demonstrate that the transition between horizontal walking and vertical climbing is gradual, incrementally altering several components of gait as inclinations increase. Such data underscore the need for further investigation into how exactly "climbing" is defined and the specific locomotor characteristics that differentiate this behavior from level walking.
Collapse
Affiliation(s)
- Melody W Young
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Clyde Webster
- School of Mechanical and Mechatronic Engineering, The University of Technology Sydney (UTS), Sydney, Australia
| | - Daniel Tanis
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Alissa F Schurr
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Christopher S Hanna
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Samantha K Lynch
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Aleksandra S Ratkiewicz
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Edwin Dickinson
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Felix H Kong
- School of Mechanical and Mechatronic Engineering, The University of Technology Sydney (UTS), Sydney, Australia
| | - Michael C Granatosky
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA.
- Center for Biomedical Innovation, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA.
| |
Collapse
|
2
|
Dickinson E, Young MW, Granatosky MC. Beakiation: how a novel parrot gait expands the locomotor repertoire of living birds. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231397. [PMID: 38298389 PMCID: PMC10827422 DOI: 10.1098/rsos.231397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024]
Abstract
Occupation of arboreal habitats poses myriad locomotor challenges, driving both anatomical and behavioural innovations across various tetrapod lineages. Here, we report and biomechanically assess a novel, beak-driven locomotor mode-'beakiation'-by which parrots advance along the underside of narrow arboreal substrates. Using high-speed videography and kinetic analyses, we describe the limb loading patterns and pendular mechanics of beakiation, and compare the biomechanical characteristics of this gait with other suspensory behaviours (namely, forelimb-driven brachiation and inverted quadrupedal walking). We report that the parrot beak experiences comparable force magnitudes (approx. 150% body weight in the normal plane; approx. 50% body weight in the fore-aft plane) to the forelimbs of brachiating primates. Parrot beakiation is also characterized by longer-than-expected pendular periods, similar to observations of gibbon brachiation. However, in terms of mechanical energy recovery, beakiation is typified by lower levels of energetic recovery than brachiating specialists: a product of its slower, more careful nature. The observation of this novel behaviour-which adds to a growing base of literature regarding beak-assisted locomotor strategies in birds-highlights the extraordinary behavioural plasticity of birds, the functional versatility of the avian beak, and the difficulties in reconstructing an animal's locomotor repertoire from morphological characteristics alone.
Collapse
Affiliation(s)
- Edwin Dickinson
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, USA
| | - Melody W. Young
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, USA
| | - Michael C. Granatosky
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, USA
- Center for Biomedical Innovation, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York, NY, USA
| |
Collapse
|
3
|
Young MW, Wilken AT, Manafzadeh AR, Schurr AF, Bastian A, Dickinson E, Granatosky MC. The dual function of prokinesis in the feeding and locomotor systems of parrots. J Exp Biol 2023; 226:jeb246659. [PMID: 37942661 PMCID: PMC10730085 DOI: 10.1242/jeb.246659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023]
Abstract
Prokinesis, a mode of avian cranial kinesis involving motion between the neurocranium and upper beak, has long been investigated in biomechanical analyses of avian feeding and drinking. However, the modern avian beak is also used for non-feeding functions. Here, we investigate the dual function of prokinesis in the feeding and locomotor systems of the rosy-faced lovebird (Agapornis roseicollis). Lovebirds and other parrots utilize their beak both during feeding and as a third limb during vertical climbing. Thus, we experimentally measured both force-generating potential and movement of the rosy-faced lovebird mandible and maxilla (via prokinetic flexion of the craniofacial hinge) during tripedal climbing and mandibular/maxillary adduction. We found that whereas the maxilla is primarily responsible for generating force during locomotion, the mandible is primarily responsible for generating force during forceful jaw adduction, hinting at a remarkable capacity to alter prokinetic function with differing neuromuscular control. The ability of the prokinetic apparatus to perform functions with competing optimality criteria via modulation of motor control illustrates the functional plasticity of the avian cranial kinesis and sheds new light on the adaptive significance of cranial mobility.
Collapse
Affiliation(s)
- Melody W. Young
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Alec T. Wilken
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Armita R. Manafzadeh
- Yale Institute for Biospheric Studies, Yale University, New Haven, CT 06520, USA
- Department of Earth & Planetary Sciences, Yale University, New Haven, CT 06520, USA
- Yale Peabody Museum of Natural History, New Haven, CT 06520, USA
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, CT 06520, USA
| | - Alissa F. Schurr
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Aaron Bastian
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Edwin Dickinson
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Michael C. Granatosky
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
- Center for Biomedical Innovation, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| |
Collapse
|
4
|
Dickinson E, Young MW, Flaim ND, Sawiec A, Granatosky MC. A functional framework for interpreting phalangeal form. J R Soc Interface 2023; 20:20230251. [PMID: 37582408 PMCID: PMC10427194 DOI: 10.1098/rsif.2023.0251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023] Open
Abstract
Across tetrapods, the proportional lengths of the manual and pedal phalanges are highly constrained, following a generalized blueprint of shortening in a proximodistal gradient. Despite this, several lineages of both mammals (e.g. sloths, bats and colugos) and birds (e.g. raptors, parrots and woodpeckers) have broken this pattern, shortening the proximal phalanx while elongating more distal elements. As yet, no unifying explanation for this convergence has been empirically evaluated. This study combines a comparative phylogenetic assessment of phalangeal morphology across mammals and birds with a novel bioinspired robotics approach to explicitly test functional hypotheses relating to these morphotypes. We demonstrate that shortening the proximal phalanx allows taxa to maximize forces produced at the proximal interphalangeal joint, while elongation of subsequent elements maintains total ray length-ensuring arboreal species can still enclose large-diameter supports. Within suspensory and vertically clinging mammals, we additionally observe a secondary adaptation towards maximizing grip strength: namely increasing the height of the trochleae to increase the moment arm of digital flexor muscles that cross the joint. Together, our analyses highlight that numerous tetrapod lineages independently converged upon this morphotype to maximize proximal gripping strength, an adaptation to support specialized hunting and locomotor behaviours.
Collapse
Affiliation(s)
- Edwin Dickinson
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Melody W. Young
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Nicholas D. Flaim
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Aleksander Sawiec
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
- Center for Biomedical Innovation, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Michael C. Granatosky
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
- Center for Biomedical Innovation, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| |
Collapse
|
5
|
Dickinson E, Young MW, Tanis D, Granatosky MC. Patterns and Factors Influencing Parrot (Order: Psittaciformes) Success in Establishing Thriving Naturalized Populations within the Contiguous United States. Animals (Basel) 2023; 13:2101. [PMID: 37443899 DOI: 10.3390/ani13132101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Parrots (Order: Psittaciformes) represent one of the most striking and ecomorphologically diverse avian clades, spanning more than two orders of magnitude in body size with populations occupying six continents. The worldwide diaspora of parrots is largely due to the pet trade, driven by human desire for bright, colorful, and intelligent animals as companions. Some introduced species have aptly inserted themselves into the local ecosystem and established successful breeding colonies all around the globe. Notably, the United States is home to several thriving populations of introduced species including red-masked parakeets (Psittacara erythrogenys), monk parakeets (Myiopsitta monachus), nanday conures (Aratinga nenday), and red-crowned amazons (Amazona viridigenalis). Their incredible success globally begs the question as to how these birds adapt so readily to novel environments. In this commentary, we trace parrots through evolutionary history, contextualize existent naturalized parrot populations within the contiguous United States, and provide a phylogenetic regression analysis of body mass and brain size based on success in establishing breeding populations. The propensity for a parrot species to become established appears to be phylogenetically driven. Notably, parrots in the family Cacatuidae and Neotropical Pyrrhua appear to be poor at establishing themselves in the United States once released. Although brain size among Psittaciformes did not show a significant impact on successful breeding in the continental United States, we propose that the success of parrots can be attributed to their charismatic nature, significant intelligence relative to other avian lineages, and behavioral flexibility.
Collapse
Affiliation(s)
- Edwin Dickinson
- Department of Anatomy, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Melody W Young
- Department of Anatomy, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Daniel Tanis
- Department of Anatomy, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Michael C Granatosky
- Department of Anatomy, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
- Center for Biomedical Innovation, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA
| |
Collapse
|
6
|
Young MW, Granatosky MC, Avey‐Arroyo JA, Butcher MT, Dickinson E. Grip it good:
in vivo
grip force across substrate diameters in the brown‐throated three‐toed sloth (
Bradypus variegatus
). J Zool (1987) 2022. [DOI: 10.1111/jzo.13041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- M. W. Young
- Department of Anatomy New York Institute of Technology College of Osteopathic Medicine Old Westbury NY USA
| | - M. C. Granatosky
- Department of Anatomy New York Institute of Technology College of Osteopathic Medicine Old Westbury NY USA
- Center for Biomedical Innovation New York Institute of Technology College of Osteopathic Medicine Old Westbury NY USA
| | | | - M. T. Butcher
- Department of Chemical and Biological Sciences Youngstown State University Youngstown OH USA
| | - E. Dickinson
- Department of Anatomy New York Institute of Technology College of Osteopathic Medicine Old Westbury NY USA
| |
Collapse
|
7
|
Dickinson E, Young MW, Kim CJ, Hadjiargyrou M, Granatosky MC. The influence of substrate size upon pulling and gripping forces in parrots (Psittaciformes: Agapornis roseicollis). J Exp Biol 2022; 225:jeb244818. [PMID: 36106504 DOI: 10.1242/jeb.244818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/29/2022] [Indexed: 01/03/2024]
Abstract
The ability to securely grasp substrates of variable diameter is critical to arboreal animals. Arboreal specialists have emerged across several vertebrate lineages - including mammals, lizards and amphibians - and several attempts have been made to quantify their grasping performance, by measuring either gripping (i.e. forces generated about an object or substrate enclosed within the digits) or pulling (i.e. the ability to resist being removed from a substrate) forces. In this study, we present data on both pulling and gripping performance across a range of substrate diameters (0.5-17.5 mm) within a model parrot species (Agapornis roseicollis). Parrots represent an ancient arboreal lineage, allowing us to compare their abilities with those of arboreal specialists within other tetrapod groups. Data were collected using 3D-printed perches of variable diameter, and forces were registered using either an AMTI low-load force plate (grip force) or a Harvard Apparatus portable strength tester (pull force). Gripping forces peaked at a 5 mm diameter perch, while pulling forces were greatest at a 2.5 mm diameter. All forces strongly diminished above 10 mm size, suggesting grip force is optimized when utilizing small perches, a finding which corresponds to observational studies of preferential perching habits among free-ranging parrots. Relative grasping performance (adjusted for body size) in parrots is roughly equivalent to that of other arboreal specialists from other tetrapod lineages, but low when compared with that of raptorial birds that utilize their feet during aerial prey capture. Further taxonomic sampling is encouraged to contextualize how grasping performance varies in an adaptive evolutionary context.
Collapse
Affiliation(s)
- Edwin Dickinson
- Department of Anatomy, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568-8000, USA
| | - Melody W Young
- Department of Anatomy, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568-8000, USA
- College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568-8000, USA
| | - Charles J Kim
- College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568-8000, USA
| | - Michael Hadjiargyrou
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY 11568-8000, USA
| | - Michael C Granatosky
- Department of Anatomy, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568-8000, USA
- Center for Biomedical Innovation, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568-8000, USA
| |
Collapse
|