1
|
Wang Z, Zhang C, Wang H, Gu T, Tian Y, Gu Z, Chen L, Zeng T, Lu L, Xu W. Effects of combined use of compound acidifiers and plant essential oils in feed on the reproductive performance and physiological status of Xianjv chickens. Poult Sci 2025; 104:104710. [PMID: 39764874 PMCID: PMC11760305 DOI: 10.1016/j.psj.2024.104710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/29/2025] Open
Abstract
This study investigates the effects of combined compound acidifiers and plant essential oils on the production performance, egg quality, and health parameters of Xianjv chickens. A total of 240 healthy 34-week-old Xianjv chickens were randomly divided into 5 groups and given 5 different feed additives: a control group with a basal diet, and four experimental groups with varying doses of compound acidifiers (CA) and essential oils (EO). The results revealed that the addition of compound acidifiers and essential oils did not significantly affect average daily feed intake, egg production rate, or feed-to-egg ratio. However, supplementation with CA and EO significantly improved eggshell strength, albumen height, and Haugh unit, enhancing overall egg quality. Additionally, the combination of these additives enhanced serum antioxidant capacity by increasing levels of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT), while reducing malondialdehyde (MDA) levels. It also lowered inflammatory cytokines such as interleukin-2 (IL-2) and interleukin-6 (IL-6) and improved intestinal health by enhancing digestive enzyme activities, including trypsin and lipase, in the duodenum and jejunum. The study concludes that the combined use of compound acidifiers and plant essential oils offers a promising alternative to antibiotics in poultry feed, improving egg quality and supporting better health status in Xianjv chickens. Nevertheless, careful optimization of the dosages and combinations is necessary to maximize their benefits without adversely affecting the birds' physiological balance.
Collapse
Affiliation(s)
- Zhaobin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Xianghu Laboratory, Hangzhou, 311231, PR China
| | - Caiyun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Xianghu Laboratory, Hangzhou, 311231, PR China; College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, PR China
| | - Huicheng Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Xianghu Laboratory, Hangzhou, 311231, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Tiantian Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Xianghu Laboratory, Hangzhou, 311231, PR China
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Xianghu Laboratory, Hangzhou, 311231, PR China
| | - Zhuoya Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Xianghu Laboratory, Hangzhou, 311231, PR China
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Xianghu Laboratory, Hangzhou, 311231, PR China
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Xianghu Laboratory, Hangzhou, 311231, PR China
| | - Wenwu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Xianghu Laboratory, Hangzhou, 311231, PR China.
| |
Collapse
|
2
|
İpçak HH, Denli M, Yokuş B, Bademkıran S. The Impact of Dietary Encapsulated Fennel Seed (Foeniculum vulgare Mill.) Essential Oil Inclusion Levels on Performance, Serum Hormone Profiles, and Expression of Reproductive Axis-Related Genes in the Early and Late Laying Phases of Hens. Vet Med Sci 2025; 11:e70150. [PMID: 39655356 PMCID: PMC11629027 DOI: 10.1002/vms3.70150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/15/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024] Open
Abstract
Fennel seed (Foeniculum vulgare Mill.) essential oil (FEO), which is rich in the phytoestrogenic compound trans-anethole, interacts with oestrogen receptors and influences molecular targets within cells and hormonal responses. This study examined the effect of dietary encapsulated FEO inclusion levels on performance, reproductive hormone profiles, and gene expression in laying hens during the early and late phases. The study was conducted in two independent trials, each involving 210 Atak-S laying hens that were randomly distributed into 3 experimental groups, each having 10 replicates with 7 hens. The dietary treatments included a basal diet without FEO (Control) and a basal diet supplemented with 175 (FEO175) or 350 mg (FEO350) of encapsulated FEO/kg for 12 weeks. The results showed that FEO350 treatment improved egg production, egg mass, and feed conversion ratio during both early and late phases (p < 0.05). Moreover, increasing FEO inclusion levels enhanced oestradiol, follicle-stimulating hormone, luteinizing hormone and progesterone concentrations in both early and late laying hens, reaching peak levels at FEO350 (p < 0.05). FEO supplementation upregulated the expression of oestrogen receptor 2 (ESR2) and follicle-stimulating hormone receptor (FSHR) (p < 0.05). Furthermore, FEO350 increased prolactin receptor (PRLR) expression during the early phase but decreased it during the late laying phase (p < 0.05). Positive correlations were observed between egg production and FSHR, ESR2 and steroidogenic acute regulatory protein (STAR) expression, with a negative correlation for PRLR (p < 0.05). In conclusion, 350 mg FEO/kg was found to be the most effective level for enhancing layer performance.
Collapse
Affiliation(s)
- Hasan Hüseyin İpçak
- Department of Animal Science, Faculty of AgricultureDicle UniversityDiyarbakırTurkey
| | - Muzaffer Denli
- Department of Animal Science, Faculty of AgricultureDicle UniversityDiyarbakırTurkey
| | - Beran Yokuş
- Department of Biochemistry, Faculty of Veterinary MedicineDicle UniversityDiyarbakırTurkey
| | - Servet Bademkıran
- Department of Obstetrics and Gynaecology, Faculty of Veterinary MedicineDicle UniversityDiyarbakirTurkey
| |
Collapse
|
3
|
Yasin A, Tamiru M, Alkhtib A, Mohammed A, Tadesse T, Wamatu J, Burton E. Impact of Dried Thyme Leaf Meal on Production Performance, Egg Quality and Blood Parameters of Laying Hens. Vet Med Sci 2025; 11:e70146. [PMID: 39611385 PMCID: PMC11605480 DOI: 10.1002/vms3.70146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/04/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND The use of commercially extracted phytogenic compounds to maintain poultry health and productivity in the absence of in-feed antibiotics is prohibitively costly in developing countries. OBJECTIVES The goal of the study is to determine the effect of dietary supplementation with Thymus schimperi leaf meal (TLM) on production performance, egg quality and haemato-biochemical parameters of Bovan brown layers. METHODS A total of 96 laying hens at 25 weeks of age were randomly assigned to 4 treatments with 6 replications each. The treatments include the control (standard commercial laying diet), TLM1.5 (control + 1.5% TLM), TLM2.5 (control + 2.5% TLM) and TLM3.5 (control + 3.5% TLM). Egg production, feed intake and feed conversion ratio were recorded for each replicate. Two eggs per replication were used to measure internal and external egg quality traits on a monthly basis. At the end of the trial, blood samples were collected from 2 birds/replicate for the determination of albumin, uric acid, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, luteinizing hormone, prolactin and progesterone. RESULTS All blood parameters were within the normal ranges of the breed. Egg production, feed conversion ratio, internal egg quality traits and external egg quality traits of hens fed diets containing 2.5% TLM were significantly higher than the control. Furthermore, diets containing 2.5% TLM led to a significantly reduced feed conversion ratio compared to all other dietary treatments. CONCLUSIONS In conclusion, 2.5% TML is recommended to improve egg production and egg quality without adverse effect on hen health.
Collapse
Affiliation(s)
- Abdulwahid Yasin
- Department of Animal ScienceCollege of Agriculture and Veterinary Medicine, Jimma UniversityJimmaEthiopia
| | - Metekia Tamiru
- Department of Animal ScienceCollege of Agriculture and Veterinary Medicine, Jimma UniversityJimmaEthiopia
| | - Ashraf Alkhtib
- School of Animal, Rural and Environmental Sciences, Brackenhurst Campus, Nottingham Trent UniversitySouthwellNottinghamshireUK
| | - Abdo Mohammed
- Department of Animal ScienceCollege of Agriculture and Veterinary Medicine, Jimma UniversityJimmaEthiopia
| | - Tagesse Tadesse
- Department of Animal ScienceCollege of Agriculture and Veterinary Medicine, Jimma UniversityJimmaEthiopia
| | - Jane Wamatu
- International Centre for Agricultural Research in Dry AreasAddis AbabaEthiopia
| | - Emily Burton
- School of Animal, Rural and Environmental Sciences, Brackenhurst Campus, Nottingham Trent UniversitySouthwellNottinghamshireUK
| |
Collapse
|
4
|
Wang L, Fan K, Xing R, Yin J, Si X, Zhang H, Huang Y, Chen W. Investigating the Effects of Dietary Bile Acids on Production Performance and Lipid Metabolism in Late-Phase Laying Hens. Animals (Basel) 2024; 14:3554. [PMID: 39765458 PMCID: PMC11672458 DOI: 10.3390/ani14243554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 01/11/2025] Open
Abstract
Multiply adverse effects including declines in production performance and excessive fat deposition were noticed with the extension of the laying cycle in hens, which are pertinent to animal welfare and human food safety. This study aimed to investigate the effect of dietary supplementation of bile acids (BAs) on production performance and lipid metabolism in late-phase laying hens. A total of 144 70-week-old hens were distributed into three treatments with eight replicates per treatment, including the basal diet with 0 (Ctrl), 95.01 (Low-BA), and 189.99 mg/kg (High-BA) of porcine BAs, respectively. The test period was from 70 to 75 weeks. The supplementation of BAs did not significantly alter laying performance during the trial, whereas it increased (p < 0.05) the total follicles compared to the Ctrl diet. The eggs from the hens fed the BA diet exhibited increased (p > 0.05) relative weight of eggshell and yolk color than those that consumed the Ctrl diet. There were no significant changes following BA treatment regarding the serum lipid profile. Dietary BA treatment reduced the total triglyceride in livers to different extents, resulting in the decreased diameter and area of vacuoles in liver tissues. The low-dose BA treatment decreased the mRNA levels of fatty acid synthase (FASN) and stearoyl-CoA desaturase (SCD), while promoting the expression of lipoprotein lipase (LPL) compared to the Ctrl group (both p < 0.05). Of note, the expressions of farnesoid X receptor (FXR), apical sodium-dependent bile acid transporter (ASBT), and ileum bile acid-binding protein (IBABP) were notably downregulated (p < 0.05) by the low-dose BA treatment. Dietary BA treatment had no apparent effects on laying performance, whereas it increased the follicle frequency, eggshell weight, and yolk color. Moreover, a diet containing 95.01 mg/kg of BAs depressed ileal BA resorption and hepatic fatty deposition by reducing lipogenesis and promoting lipolysis, which may have a beneficial effect on the liver in late-phase layers.
Collapse
Affiliation(s)
- Longfei Wang
- Institute of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (L.W.); (R.X.); (J.Y.); (X.S.); (H.Z.); (Y.H.)
| | - Kefeng Fan
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China;
| | - Ronghui Xing
- Institute of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (L.W.); (R.X.); (J.Y.); (X.S.); (H.Z.); (Y.H.)
| | - Jixue Yin
- Institute of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (L.W.); (R.X.); (J.Y.); (X.S.); (H.Z.); (Y.H.)
| | - Xuemeng Si
- Institute of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (L.W.); (R.X.); (J.Y.); (X.S.); (H.Z.); (Y.H.)
| | - Huaiyong Zhang
- Institute of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (L.W.); (R.X.); (J.Y.); (X.S.); (H.Z.); (Y.H.)
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Ghent, Belgium
| | - Yanqun Huang
- Institute of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (L.W.); (R.X.); (J.Y.); (X.S.); (H.Z.); (Y.H.)
| | - Wen Chen
- Institute of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (L.W.); (R.X.); (J.Y.); (X.S.); (H.Z.); (Y.H.)
| |
Collapse
|
5
|
Pontes KM, Del Vesco AP, Khatlab ADS, Lima Júnior JWR, Cangianelli GH, López JCC, Stivanin TE, Bastos MS, Santana TP, Gasparino E. Effects of inclusion of the blend of essential oils, organic acids, curcumin, tannins, vitamin E, and zinc in the maternal diet, and of incubation temperature on early and late development of quail. Poult Sci 2024; 103:104022. [PMID: 39068694 PMCID: PMC11332855 DOI: 10.1016/j.psj.2024.104022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 07/30/2024] Open
Abstract
The maternal diet and egg incubation temperature are some of the factors that can influence the embryonic development and performance of the newly chicks at 15 d of age. This study evaluated the effects of adding a blend of organic acids, essential oils, curcumin, tannins, vitamin E, and zinc microencapsulated in to the diet of female quails (Coturnix coturnix japonica) on their productive, reproductive performance and redox parameters of their eggs and the interaction of maternal diet × incubation temperature on embryo (E16 and E18) and chicks development. At 98 d of age, 64 female quails with a mean body weight of 150 g ± 0.5 were distributed into two treatments: a Basal diet or a diet supplemented with blend (Sannimix). The eggs from each female were incubated at 37.5°C (Control) and 38.5°C (High Temperature) throughout the incubation period. After hatching, chicks were distributed in a 2 (maternal diet) × 2 (incubation temperature) factorial design. Female quails supplemented with Sannimix showed better productive and reproductive performance and produced higher-quality embryos. Their offspring had greater weight at hatch and at 15 d of age. The eggs and offspring of supplemented with Sannimix female quails showed better oxidative stability. At E16 and E18, High Temperature increased yolk sac utilization and gene expression of the growth hormone receptor (GHR). At E16, embryos from supplemented with Sannimix female quail had higher expression of insulin-like growth factor type I (IGFI) and heat shock protein 70 kDa genes. At 15 d of age, highest expression of the GHR and IGFI genes was observed in chicks from female quails fed the Sannimix diet, regardless of incubation temperature. Regarding the maternal diet × incubation temperature an improved result was observed for chicks from female quails fed with Sannimix even when eggs are exposed to High Temperature during the incubation. The supplementation of quail diets with blend Sannimix improves productive and reproductive performance, egg quality and their embryos, as well as their offspring quality.
Collapse
Affiliation(s)
- Keila Mileski Pontes
- Department of Animal Science, State University of Maringá, Avenida Colombo, Jardim Universitário, Maringá, Paraná, 87020-900, Brazil
| | - Ana Paula Del Vesco
- Department of Animal Science, Federal University of Sergipe, Avenida Marechal Rondon, s/n, Jardim Rosa Elze, São Cristóvão, Sergipe, 49100-000, Brazil
| | - Angélica de Souza Khatlab
- Department of Animal Science, State University of Maringá, Avenida Colombo, Jardim Universitário, Maringá, Paraná, 87020-900, Brazil
| | - José Wellington Rodrigues Lima Júnior
- Department of Animal Science, Federal University of Sergipe, Avenida Marechal Rondon, s/n, Jardim Rosa Elze, São Cristóvão, Sergipe, 49100-000, Brazil
| | - Gabriela Hernandes Cangianelli
- Department of Animal Science, State University of Maringá, Avenida Colombo, Jardim Universitário, Maringá, Paraná, 87020-900, Brazil
| | - Jessica Carolina Camargo López
- Department of Animal Science, State University of Maringá, Avenida Colombo, Jardim Universitário, Maringá, Paraná, 87020-900, Brazil
| | - Tádia Emanuele Stivanin
- Graduate Program in Animal Science, Faculty of Agricultural and Veterinary Sciences/Paulista State University "Júlio de Mesquita Filho", Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal, São Paulo, 14884-900, Brazil
| | - Marisa Silva Bastos
- Department of Animal Science, Federal University of Sergipe, Avenida Marechal Rondon, s/n, Jardim Rosa Elze, São Cristóvão, Sergipe, 49100-000, Brazil
| | - Thaís Pacheco Santana
- Department of Animal Science, Federal University of Sergipe, Avenida Marechal Rondon, s/n, Jardim Rosa Elze, São Cristóvão, Sergipe, 49100-000, Brazil
| | - Eliane Gasparino
- Department of Animal Science, State University of Maringá, Avenida Colombo, Jardim Universitário, Maringá, Paraná, 87020-900, Brazil.
| |
Collapse
|
6
|
Dedousi A, Kotzamanidis C, Malousi A, Giantzi V, Sossidou E. The Influence of Dietary Supplementation with Dried Olive Pulp on Gut Microbiota, Production Performance, Egg Quality Traits, and Health of Laying Hens. Microorganisms 2024; 12:1916. [PMID: 39338591 PMCID: PMC11433822 DOI: 10.3390/microorganisms12091916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
This study examines the dietary effect of dried olive pulp (OP) on the overall performance, egg quality, health, and gut microbiota of laying hens during a 36-week trial. A total of 180 Isa Brown layers, aged 23 weeks, were assigned to 15-floor pens and divided into three feeding groups (CON, OP4, and OP6) based on the dietary level of OP. Egg quality and biochemical parameters were assessed in 39- and 59-week-old hens. Fecal samples were collected for microbiota analysis. Data were analyzed with an Analysis of Variance. The percentage of broken eggshells was found to be 15-34% lower in the OP groups compared to the CON groups. At 59 weeks of age, a significant reduction in shell thickness was observed in the CON eggs compared to the OP eggs (p < 0.05). At 39 weeks of age, OP6 eggs had the darkest yolk color of all groups (p < 0.05). Fecal microbial diversity was affected only by hens' age. However, an enrichment in bacterial species belonging to the genera Megasphaera and Megamonas was found in the OP groups at 59 weeks of age. Our results demonstrate that OP feeding beneficially affects egg quality and promotes the proliferation of bacteria involved in the degradation of complex plant compounds, potentially contributing to the overall health of the gut microbiota.
Collapse
Affiliation(s)
- Anna Dedousi
- Veterinary Research Institute, Hellenic Agricultural Organization, DIMITRA, 57001 Thessaloniki, Greece
| | - Charalampos Kotzamanidis
- Veterinary Research Institute, Hellenic Agricultural Organization, DIMITRA, 57001 Thessaloniki, Greece
| | - Andigoni Malousi
- Laboratory of Biological Chemistry, Medical School, Aristotle University, 54124 Thessaloniki, Greece
| | - Virginia Giantzi
- Veterinary Research Institute, Hellenic Agricultural Organization, DIMITRA, 57001 Thessaloniki, Greece
| | - Evangelia Sossidou
- Veterinary Research Institute, Hellenic Agricultural Organization, DIMITRA, 57001 Thessaloniki, Greece
| |
Collapse
|
7
|
Liu H, Liu W, Ai M, Hao X, Zhang Q, Ren J, Zhang K. Effects of β-mannanase supplementation on productive performance, inflammation, energy metabolism, and cecum microbiota composition of laying hens fed with reduced-energy diets. Poult Sci 2024; 103:103521. [PMID: 38367470 PMCID: PMC10882124 DOI: 10.1016/j.psj.2024.103521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/19/2024] Open
Abstract
The objective of this study is to investigate the beneficial effects and underlying mechanism of dietary β-mannanase supplementation on the productive performance of laying hens fed with metabolic energy (ME)-reduced diets. A total of 448 Hy-Line gray laying hens were randomly assigned to seven groups. Each group had 8 replicates with 8 hens. The groups included a control diet (CON) with a ME of 2750 kcal/Kg, diets reduced by 100 kcal/Kg or 200 kcal/Kg ME (ME_100 or ME_200), and diets with 0.15 g/Kg or 0.2 g/Kg β-mannanase (ME_100+β-M_0.15, ME_100+β-M_0.2, ME_200+β-M_0.15, and ME_200+β-M_0.2). The productive performance, egg quality, intestinal morphology, inflammatory response, mRNA expression related to the Nuclear factor kappa B (NF-κB) and AMPK pathway, and cecum microbiome were evaluated in this study. ME-reduced diets negatively impacted the productive performance of laying hens. However, supplementation with β-mannanase improved FCR, decreased ADFI, and restored average egg weight to the level of the CON group. ME-reduced diets increased the levels of interleukin-1β (IL-1β) and IL-6 while decreasing the levels of IL-4 and IL-10 in the jejunum of laying hens. However, dietary β-mannanase supplementation improved jejunum morphology, reduced pro-inflammatory cytokine concentrations, and increased levels of anti-inflammatory factors in laying hens fed with ME-reduced diets. The mRNA levels of IL-6, IFN-γ, TLR4, MyD88, and NF-κB in the jejunum of ME-reduced diets were significantly higher than that in CON, dietary β-mannanase supplementation decreased these genes expression in laying hens fed with ME-reduced diets. Moreover, dietary β-mannanase supplementation also decreased the mRNA levels of AMPKα and AMPKγ, and increased the abundance of mTOR in the jejunum of laying hens fed with ME-reduced diets. Cecum microbiota analysis revealed that dietary β-mannanase increased the abundance of various beneficial bacteria (e.g., g_Pseudoflavonifractor, g_Butyricicoccus, and f_Lactobacillaceae) in laying hens fed with ME-reduced diets. In conclusion, dietary β-mannanase supplementation could improve the productive performance of laying hens fed with a ME-reduced diet by improving intestinal morphology, alleviating intestinal inflammation, changing energy metabolism-related signaling pathways, and increasing cecum-beneficial microbiota.
Collapse
Affiliation(s)
- Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Weiyong Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Mingming Ai
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaojing Hao
- Qingdao Animal Husbandry Workstation (Qingdao Research Institute of Husbandry and Veterinary), Qingdao 266100, China
| | - Qian Zhang
- Qingdao Animal Husbandry Workstation (Qingdao Research Institute of Husbandry and Veterinary), Qingdao 266100, China
| | - Jingle Ren
- Qingdao Animal Husbandry Workstation (Qingdao Research Institute of Husbandry and Veterinary), Qingdao 266100, China
| | - Kai Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
8
|
Liu M, Kang Z, Cao X, Jiao H, Wang X, Zhao J, Lin H. Prevotella and succinate treatments altered gut microbiota, increased laying performance, and suppressed hepatic lipid accumulation in laying hens. J Anim Sci Biotechnol 2024; 15:26. [PMID: 38369510 PMCID: PMC10874536 DOI: 10.1186/s40104-023-00975-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 12/12/2023] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND This work aimed to investigate the potential benefits of administering Prevotella and its primary metabolite succinate on performance, hepatic lipid accumulation and gut microbiota in laying hens. RESULTS One hundred and fifty 58-week-old Hyline Brown laying hens, with laying rate below 80% and plasma triglyceride (TG) exceeding 5 mmol/L, were used in this study. The hens were randomly allocated into 5 groups and subjected to one of the following treatments: fed with a basal diet (negative control, NC), oral gavage of 3 mL/hen saline every other day (positive control, PC), gavage of 3 mL/hen Prevotella melaninogenica (107 CFU/mL, PM) or 3 mL/hen Prevotella copri (107 CFU/mL, P. copri) every other day, and basal diet supplemented with 0.25% sodium succinate (Succinate). The results showed that PM and P. copri treatments significantly improved laying rate compared to the PC (P < 0.05). The amount of lipid droplet was notably decreased by PM, P. copri, and Succinate treatments at week 4 and decreased by P. copri at week 8 (P < 0.05). Correspondingly, the plasma TG level in Succinate group was lower than that of PC (P < 0.05). Hepatic TG content, however, was not significantly influenced at week 4 and 8 (P > 0.05). PM treatment increased (P < 0.05) the mRNA levels of genes PGC-1β and APB-5B at week 4, and ACC and CPT-1 at week 8. The results indicated enhanced antioxidant activities at week 8, as evidenced by reduced hepatic malondialdehyde (MDA) level and improved antioxidant enzymes activities in PM and Succinate groups (P < 0.05). Supplementing with Prevotella or succinate can alter the cecal microbiota. Specifically, the abundance of Prevotella in the Succinate group was significantly higher than that in the other 4 groups at the family and genus levels (P < 0.05). CONCLUSIONS Oral intake of Prevotella and dietary supplementation of succinate can ameliorate lipid metabolism of laying hens. The beneficial effect of Prevotella is consistent across different species. The finding highlights that succinate, the primary metabolite of Prevotella, represents a more feasible feed additive for alleviating fatty liver in laying hens.
Collapse
Affiliation(s)
- Min Liu
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271018, China
| | - Zeyue Kang
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271018, China
| | - Xikang Cao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271018, China
| | - Hongchao Jiao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiaojuan Wang
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271018, China
| | - Jingpeng Zhao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271018, China
| | - Hai Lin
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
9
|
Darmawan A, Öztürk E, Güngör E, Özlü Ş, Jayanegara A. Effects of essential oils on egg production and feed efficiency as influenced by laying hen breed: A meta-analysis. Vet World 2024; 17:197-206. [PMID: 38406358 PMCID: PMC10884582 DOI: 10.14202/vetworld.2024.197-206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/26/2023] [Indexed: 02/27/2024] Open
Abstract
Background and Aim Successful rearing of laying hens to achieve optimal egg production is an endeavor that often faces various constraints and challenges, such as infectious diseases, environmental stressors, and fluctuations in feed quality. The incorporation of essential oils (EOs) into the diet of laying hens has attracted considerable attention in recent years. Therefore, our study aimed to evaluate the efficacy of EO inclusion in laying hen diets by considering the effects of production phase and breed on performance, egg quality, serum biochemistry, gut health, and antioxidant activity. Materials and Methods The articles were obtained from the Web of Science, Scopus, Science Direct, and PubMed using the search terms "essential oils," "laying hens," and "phytobiotics." Data from 27 articles and 71 experiments were grouped according to laying hen production phase and breed in the database. The EO levels ranged from 0 to 1000 mg/kg, with thymol and carvacrol being the major EOs. A mixed model was used to analyze the data. Random effects were applied to the treatment, and fixed effects were applied to EO level, production phase, and breed. Results Egg production, feed intake, feed efficiency, eggshell quality, villus height, crypt depth, superoxide dismutase, and glutathione peroxidase levels increased linearly (p = 0.05) and egg weight and mass increased quadratically (p < 0.05) with increasing EO concentrations. An interaction was observed between the EO level egg production and feed conversion ratio (p = 0.05). Serum glucose, cholesterol, and malondialdehyde levels decreased with increasing EO concentrations (p < 0.05). Conclusions The inclusion of EOs effectively increased egg production, feed efficiency, egg weight, egg mass, eggshell quality, oxidative enzymes, and intestinal health. In addition, the proportion of dietary EOs in lightweight laying hens was higher than that in semi-heavy-weight laying hens in improving egg production and feeding efficiency.
Collapse
Affiliation(s)
- Arif Darmawan
- Department of Animal Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor, Indonesia
- Department of Animal Science, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey
- Animal Feed and Nutrition Modelling Research Group, Animal Science Faculty, IPB University, Bogor, Indonesia
| | - Ergin Öztürk
- Department of Animal Science, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey
| | - Emrah Güngör
- Department of Animal Science, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey
| | - Şevket Özlü
- Department of Animal Science, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey
| | - Anuraga Jayanegara
- Department of Animal Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor, Indonesia
- Animal Feed and Nutrition Modelling Research Group, Animal Science Faculty, IPB University, Bogor, Indonesia
| |
Collapse
|
10
|
Li J, Wang Y, Zheng W, Xia T, Kong X, Yuan Z, Niu B, Wei G, Li B. Comprehensive evaluation of treating drinking water for laying hens using slightly acidic electrolyzed water. Poult Sci 2024; 103:103176. [PMID: 37939586 PMCID: PMC10665938 DOI: 10.1016/j.psj.2023.103176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023] Open
Abstract
Slightly acidic electrolyzed water (SAEW) is well-known for its highly potent antibacterial properties and safe residue-free nature. In this study, a comprehensive evaluation was conducted on 2 disinfection methods for waterline cleaning in poultry houses: (1) continuously add SAEW into the waterline and (2) the conventional waterline disinfection method, which includes regular use of high-concentration chemical disinfectant for soaking the waterline and flushing with water. The evaluation focused on the effects of these methods on bacteria levels in laying hens' drinking water, the fecal normal rate of laying hens, egg quality, as well as the economic costs and water footprint associated with each method. The results show that the inhibition rate of the control group was 52.45% to 80.36%, which used 1500 mg/L sodium dichloroisocyanurate (DCCNa) for soaking and then flushing with water. The bacterial levels in the waterline returned to pre-treatment levels 26 h after cleaning. However, the experimental group with an available chlorine concentration (ACC) of 0.3 mg/L SAEW showed a higher inhibition rate (99.90%) than the control group (P < 0.05) and exhibited a sustained antimicrobial effect. Regarding eggshell thickness, eggshell strength, and Haugh units of the egg, there were no significant differences between the experimental and control groups. However, the experimental group had higher egg weight and darker yolk color (P < 0.05) than those of the control group. Besides, the experimental group exhibited a higher fecal normal rate and a lower water footprint than those of the control group. Hence, SAEW represents a favorable choice for disinfecting drinking water in poultry houses due to its ease of preparation, lack of residue, energy efficiency, and efficient antibacterial properties. To ensure adequate sanitation, it is recommended to incorporate SAEW with an ACC of 0.3 mg/L into the daily management of the drinking water system for laying hens.
Collapse
Affiliation(s)
- Jian Li
- Department of Agricultural Structure and Environmental Engineering, College of Water Resources and Civil Engineering, China Agricultural University, 100083, Beijing, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, 100083, Beijing, China; Beijing Engineering Research Center on Animal Healthy Environment, 100083, Beijing, China
| | - Yang Wang
- Department of Agricultural Structure and Environmental Engineering, College of Water Resources and Civil Engineering, China Agricultural University, 100083, Beijing, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, 100083, Beijing, China; Beijing Engineering Research Center on Animal Healthy Environment, 100083, Beijing, China
| | - Weichao Zheng
- Department of Agricultural Structure and Environmental Engineering, College of Water Resources and Civil Engineering, China Agricultural University, 100083, Beijing, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, 100083, Beijing, China; Beijing Engineering Research Center on Animal Healthy Environment, 100083, Beijing, China
| | - Tong Xia
- Department of Agricultural Structure and Environmental Engineering, College of Water Resources and Civil Engineering, China Agricultural University, 100083, Beijing, China
| | - Xiangbing Kong
- Ruiande Environmental Protection Equipment Co., LTD., Beijing 102600, China
| | - Zhengdong Yuan
- Beijing Deqingyuan Agricultural Technology Co., Ltd., Beijing 102115, China
| | - Binglong Niu
- Beijing Deqingyuan Agricultural Technology Co., Ltd., Beijing 102115, China
| | - Guowen Wei
- Beijing Deqingyuan Agricultural Technology Co., Ltd., Beijing 102115, China
| | - Baoming Li
- Department of Agricultural Structure and Environmental Engineering, College of Water Resources and Civil Engineering, China Agricultural University, 100083, Beijing, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, 100083, Beijing, China; Beijing Engineering Research Center on Animal Healthy Environment, 100083, Beijing, China.
| |
Collapse
|
11
|
Cao Z, Liu Z, Zhang N, Bao C, Li X, Liu M, Yuan W, Wu H, Shang H. Effects of dietary dandelion (Taraxacum mongolicum Hand.-Mazz.) polysaccharides on the performance and gut microbiota of laying hens. Int J Biol Macromol 2023; 240:124422. [PMID: 37068539 DOI: 10.1016/j.ijbiomac.2023.124422] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 04/19/2023]
Abstract
This experiment was designed to evaluate the influences of dietary dandelion polysaccharides (DP) on the performance and cecum microbiota of laying hens. Three hundred laying hens were assigned to five treatment groups: the basal diet group (CK group), three DP groups (basal diets supplemented with 0.5, 1.0, and 1.5 % DP), and the inulin group (IN group, basal diet supplemented with 1.5 % inulin). Increased daily egg weight and a decreased feed conversion rate were observed when the diets were supplemented with inulin or DP. The calcium metabolism rate in the 0.5 % and 1.0 % DP groups was greater than that in the CK group. The DP groups increased the short-chain fatty acid concentration, decreased pH, and enhanced the relative abundances of Parabacteroides, Alloprevotella, and Romboutsia in the cecum. These results showed that DP supplementation in the diets of laying hens can improve their performance, which might be associated with the regulation of the cecal microbiota.
Collapse
Affiliation(s)
- Zihang Cao
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China
| | - Zhenhua Liu
- The Third Affiliated Clinical Hospital of Changchun University of Chinese Medicine, Changchun 130118, China
| | - Nanyi Zhang
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China
| | - Chenguang Bao
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Xinyu Li
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Mengxue Liu
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Wei Yuan
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Hongxin Wu
- Institute of Grassland Research, CAAS, Hohhot 010010, China
| | - Hongmei Shang
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|