1
|
Liu Y, Liu S, Sheng H, Feng X, Wang S, Hu Y, Zhang L, Cai B, Ma Y. Revolutionizing cattle breeding: Gene editing advancements for enhancing economic traits. Gene 2024; 927:148595. [PMID: 38795857 DOI: 10.1016/j.gene.2024.148595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Beef and dairy products are rich in protein and amino acids, making them highly nutritious for human consumption. The increasing use of gene editing technology in agriculture has paved the way for genetic improvement in cattle breeding via the development of the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein) system. Gene sequences are artificially altered and employed in the pursuit of improving bovine breeding research through targeted knockout, knock-in, substitution, and mutation methods. This review offers a comprehensive analysis of the advancements in gene editing technology and its diverse applications in enhancing both quantitative and qualitative traits across livestock. These applications encompass areas such as meat quality, milk quality, fertility, disease resistance, environmental adaptability, sex control, horn development, and coat colour. Furthermore, the review considers prospective ideas and insights that may be employed to refine breeding traits, enhance editing efficiency, and navigate the ethical considerations associated with these advancements. The review's focus on improving the quality of beef and milk is intended to enhance the economic viability of these products. Furthermore, it constitutes a valuable resource for scholars and researchers engaged in the fields of cattle genetic improvement and breeding.
Collapse
Affiliation(s)
- Yuan Liu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| | - Shuang Liu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| | - Hui Sheng
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| | - Xue Feng
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| | - Shuzhe Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| | - Yamei Hu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| | - Lingkai Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| | - Bei Cai
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China
| | - Yun Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
2
|
Silva EFP, Gaia RC, Mulim HA, Pinto LFB, Iung LHS, Brito LF, Pedrosa VB. Genome-Wide Association Study of Conformation Traits in Brazilian Holstein Cattle. Animals (Basel) 2024; 14:2472. [PMID: 39272257 PMCID: PMC11394126 DOI: 10.3390/ani14172472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
The linear conformation of animals exerts an influence on health, reproduction, production, and welfare, in addition to longevity, which directly affects the profitability of milk-producing farms. The objectives of this study were (1) to perform genome-wide association studies (GWASs) of conformation traits, namely the Rump, Feet and Legs, Mammary System, Dairy Strength, and Final Classification traits, and (2) to identify genes and related pathways involved in physiological processes associated with conformation traits in Brazilian Holstein cattle. Phenotypic and genotypic data from 2339 Holstein animals distributed across the states of Rio Grande do Sul, Paraná, São Paulo, and Minas Gerais were used. The genotypic data were obtained with a 100 K SNP marker panel. The single-step genome-wide association study (ssGWAS) method was employed in the analyses. Genes close to a significant SNP were identified in an interval of 100 kb up- and downstream using the Ensembl database available in the BioMart tool. The DAVID database was used to identify the main metabolic pathways and the STRING program was employed to create the gene regulatory network. In total, 36 significant SNPs were found on 15 chromosomes; 27 of these SNPs were linked to genes that may influence the traits studied. Fourteen genes most closely related to the studied traits were identified, as well as four genes that showed interactions in important metabolic pathways such as myogenesis, adipogenesis, and angiogenesis. Among the total genes, four were associated with myogenesis (TMOD2, TMOD3, CCND2, and CTBP2), three with angiogenesis (FGF23, FGF1, and SCG3), and four with adipogenesis and body size and development (C5H12orf4, CCND2, EMILIN1, and FGF6). These results contribute to a better understanding of the biological mechanisms underlying phenotypic variability in conformation traits in Brazilian Holstein cattle.
Collapse
Affiliation(s)
- Emanueli F P Silva
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa 84010-330, PR, Brazil
| | - Rita C Gaia
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa 84010-330, PR, Brazil
| | - Henrique A Mulim
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | - Laiza H S Iung
- Neogen Corporation, Pindamonhangaba 12412-800, SP, Brazil
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Victor B Pedrosa
- Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa 84010-330, PR, Brazil
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
- Neogen Corporation, Biotechnology Research, Lincoln, NE 68504, USA
| |
Collapse
|
3
|
Yang P, Li X, Liu C, Han Y, E G, Huang Y. Role and Regulatory Mechanism of circRNA_14820 in the Proliferation and Differentiation of Goat Skeletal Muscle Satellite Cells. Int J Mol Sci 2024; 25:8900. [PMID: 39201586 PMCID: PMC11354305 DOI: 10.3390/ijms25168900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Skeletal muscle satellite cells (SMSCs), a type of myogenic stem cell, play a pivotal role in postnatal muscle regeneration and repair in animals. Circular RNAs (circRNAs) are a distinct class of non-coding RNA molecules capable of regulating muscle development by modulating gene expression, acting as microRNAs, or serving as protein decoys. In this study, we identified circ_14820, an exonic transcript derived from adenosine triphosphatase family protein 2 (ATAD2), through initial RNA-Seq analysis. Importantly, overexpression of circ_14820 markedly enhanced the proliferation of goat SMSCs while concomitantly suppressing their differentiation. Moreover, circ_14820 exhibited predominant localization in the cytoplasm of SMSCs. Subsequent small RNA and mRNA sequencing of circ_14820-overexpressing SMSCs systematically elucidated the molecular regulatory mechanisms associated with circ_14820. Our preliminary findings suggest that the circ_14820-miR-206-CCND2 regulatory axis may govern the development of goat SMSCs. These discoveries contribute to a deeper understanding of circRNA-mediated mechanisms in regulating skeletal muscle development, thereby advancing our knowledge of muscle biology.
Collapse
Affiliation(s)
| | | | | | | | | | - Yongfu Huang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; (P.Y.); (X.L.); (C.L.); (Y.H.); (G.E.)
| |
Collapse
|
4
|
Chen Z, Li J, Bai Y, Liu Z, Wei Y, Guo D, Jia X, Shi B, Zhang X, Zhao Z, Hu J, Han X, Wang J, Liu X, Li S, Zhao F. Unlocking the Transcriptional Control of NCAPG in Bovine Myoblasts: CREB1 and MYOD1 as Key Players. Int J Mol Sci 2024; 25:2506. [PMID: 38473754 DOI: 10.3390/ijms25052506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Muscle formation directly determines meat production and quality. The non-SMC condensin I complex subunit G (NCAPG) is strongly linked to the growth features of domestic animals because it is essential in controlling muscle growth and development. This study aims to elucidate the tissue expression level of the bovine NCAPG gene, and determine the key transcription factors for regulating the bovine NCAPG gene. In this study, we observed that the bovine NCAPG gene exhibited high expression levels in longissimus dorsi and spleen tissues. Subsequently, we cloned and characterized the promoter region of the bovine NCAPG gene, consisting of a 2039 bp sequence, through constructing the deletion fragment double-luciferase reporter vector and site-directed mutation-identifying core promoter region with its key transcription factor binding site. In addition, the key transcription factors of the core promoter sequence of the bovine NCAPG gene were analyzed and predicted using online software. Furthermore, by integrating overexpression experiments and the electrophoretic mobility shift assay (EMSA), we have shown that cAMP response element binding protein 1 (CREB1) and myogenic differentiation 1 (MYOD1) bind to the core promoter region (-598/+87), activating transcription activity in the bovine NCAPG gene. In conclusion, these findings shed important light on the regulatory network mechanism that underlies the expression of the NCAPG gene throughout the development of the muscles in beef cattle.
Collapse
Affiliation(s)
- Zongchang Chen
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jingsheng Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanbin Bai
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhanxin Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yali Wei
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Dashan Guo
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xue Jia
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Bingang Shi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaolan Zhang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhidong Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiangmin Han
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Fangfang Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
5
|
Liu J, Xu L, Ding X, Ma Y. Genome-Wide Association Analysis of Reproductive Traits in Chinese Holstein Cattle. Genes (Basel) 2023; 15:12. [PMID: 38275594 PMCID: PMC10815438 DOI: 10.3390/genes15010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/27/2024] Open
Abstract
This study was to explore potential SNP loci for reproductive traits in Chinese Holstein cattle and identify candidate genes. Genome-wide Association Study based on mixed linear model was performed on 643 Holstein cattle using GeneSeek Bovine 50 K SNP chip. Our results detected forty significant SNP loci after Bonferroni correction. We identified five genes (VWC2L, STAT1, PPP3CA, LDB3, and CTNNA3) as being associated with pregnancy ratio of young cows, five genes (PAEP, ACOXL, EPAS1, GLRB, and MARVELD1) as being associated with pregnancy ratio of adult cows, and nine genes (PDE1B, SLCO1A2, ARHGAP26, ADAM10, APBB1, MON1B, COQ9, CDC42BPB, MARVELD1, and HPSE2) as being associated with daughter pregnancy rate. Our study may provide valuable insights into identifying genes related to reproductive traits and help promote the application of molecular breeding in dairy cows.
Collapse
Affiliation(s)
- Jiashuang Liu
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China;
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China;
| | - Lingyang Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Xiangbin Ding
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China;
| | - Yi Ma
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China;
| |
Collapse
|