1
|
Lanci A, Iacono E, Merlo B. Therapeutic Application of Extracellular Vesicles Derived from Mesenchymal Stem Cells in Domestic Animals. Animals (Basel) 2024; 14:2147. [PMID: 39123673 PMCID: PMC11310970 DOI: 10.3390/ani14152147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/12/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Recently, the therapeutic potential of extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) has been extensively studied in both human and veterinary medicine. EVs are nano-sized particles containing biological components commonly found in other biological materials. For that reason, EV isolation and characterization are critical to draw precise conclusions during their investigation. Research on EVs within veterinary medicine is still considered in its early phases, yet numerous papers were published in recent years. The conventional adult tissues for deriving MSCs include adipose tissue and bone marrow. Nonetheless, alternative sources such as synovial fluid, endometrium, gingiva, and milk have also been intermittently used. Fetal adnexa are amniotic membrane/fluid, umbilical cord and Wharton's jelly. Cells derived from fetal adnexa exhibit an intermediate state between embryonic and adult cells, demonstrating higher proliferative and differentiative potential and longer telomeres compared to cells from adult tissues. Summarized here are the principal and recent preclinical and clinical studies performed in domestic animals such as horse, cattle, dog and cat. To minimize the use of antibiotics and address the serious issue of antibiotic resistance as a public health concern, they will undoubtedly also be utilized in the future to treat infections in domestic animals. A number of concerns, including large-scale production with standardization of EV separation and characterization techniques, must be resolved for clinical application.
Collapse
Affiliation(s)
- Aliai Lanci
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sora 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (E.I.); (B.M.)
| | - Eleonora Iacono
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sora 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (E.I.); (B.M.)
- Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, 40100 Bologna, Italy
| | - Barbara Merlo
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sora 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (E.I.); (B.M.)
- Health Science and Technologies Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, 40100 Bologna, Italy
| |
Collapse
|
2
|
Sousa GC, Carvalho MG, Fonseca-Alves CE, Souza FF. Serum Extracellular Vesicles Cargo Approach in Bitches with Mammary Tumors. Curr Issues Mol Biol 2024; 46:7745-7768. [PMID: 39057100 PMCID: PMC11275879 DOI: 10.3390/cimb46070459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
This study investigated serum extracellular vesicles (EVs) in bitches with mammary neoplasms, in order to understand their size, shape, and concentration, as well as their association with tumor malignancy. Thirty bitches were categorized into control (n = 10), mammary tumor grades I and II (GI, n = 13), and grade III (GII, n = 7). Serum was separated from blood collected during mastectomy, and EVs were isolated using size exclusion chromatography. The analysis revealed no significant differences in EV concentrations among groups, with similar concentrations for control, GI, and GII. Ninety-one proteins were identified in EV-enriched samples, with six showing varied abundance across groups. Notably, keratin 18 was highly abundant in GI, while sushi domain-containing protein, EvC ciliary subunit 2, and the joining chain of multimeric IgM and IgA were increased in GII. Additionally, protocadherin 17 and albumin were upregulated in both GI and GII. ROC curves identified potential biomarkers for differentiating tumor grades. Enrichment pathway analysis revealed AFP gene upregulation in the GI. Mass spectrometry proteomics data were deposited in Mendeley Data. The study provides valuable insights into serum EV characterization in bitches, suggesting keratin 18 and protocadherin 17 as potential biomarkers for canine mammary neoplasia, with implications for future diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Gabriela C. Sousa
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, Unesp, Botucatu 18618-687, São Paulo, Brazil; (G.C.S.); (M.G.C.); (C.E.F.-A.)
- Department of Small Animal Clinical Sciences, Virginia Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA
| | - Marcos G. Carvalho
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, Unesp, Botucatu 18618-687, São Paulo, Brazil; (G.C.S.); (M.G.C.); (C.E.F.-A.)
| | - Carlos E. Fonseca-Alves
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, Unesp, Botucatu 18618-687, São Paulo, Brazil; (G.C.S.); (M.G.C.); (C.E.F.-A.)
| | - Fabiana F. Souza
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, Unesp, Botucatu 18618-687, São Paulo, Brazil; (G.C.S.); (M.G.C.); (C.E.F.-A.)
| |
Collapse
|
3
|
Rešetar Maslov D, Rubić I, Farkaš V, Kuleš J, Beer Ljubić B, Beletić A, Samardžija M, Kovačić M, Jurkić Krsteska G, Mrljak V. Characterization and LC-MS/MS based proteomic analysis of extracellular vesicles separated from blood serum of healthy and dogs naturally infected by Babesia canis. A preliminary study. Vet Parasitol 2024; 328:110188. [PMID: 38653059 DOI: 10.1016/j.vetpar.2024.110188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Canine babesiosis is a rapidly spreading tick-borne disease in Europe, which entails protozoan parasites invading red blood cells. Small extracellular vesicles (EVs) (< 200 nm) were isolated from the serum of 15 healthy and 15 by Babesia canis naturally infected dogs aimed to distinguish EV characteristics and protein profiles. There were no significant differences (P = 0.05) observed in the mean sizes and concentrations of serum EVs between the healthy and canine babesiosis groups. Despite a higher number of Canis lupus proteins detected in EVs from serum of diseased dogs, there were no statistically significant differences (P < 0.05) in the number of protein IDs between the experimental groups. We successfully identified 211 Canis lupus proteins across both experimental groups, of which 147 Canis lupus proteins were validated as being EV-associated. This data set is accessible via the ProteomeXchange PXD047647. EVs isolated from serum of B. canis infected dogs were Cd9+, Cd63+, Cd81+, and Cd82+. Furthermore, 73 Canis lupus proteins were validated as EV-associated and specific for EVs isolated from serum of B. canis-infected dogs. These were predominantly membrane and cytosolic proteins, and innate and adaptive immune system-related proteins, especially those involved in adhesion and proteoglycan mechanisms like integrins. Enrichment was also observed for proteins involved in vascular and cellular responses, including signalling pathways such as VEGF, VEGFR, and the LKB1 network. When only blood-related sites of EV expression were evaluated, the origins of EV proteins were mostly cells of immune system. These were dendritic cells, neutrophils, B cells, monocytes and platelets. In general, proteins were enriched in pathways that collectively regulate various cellular processes, including immune responses, communication, signal transduction, membrane trafficking, and apoptosis. Serum EVs and their protein cargo may have an important role in both the invasion of B. canis and the host's response to the parasitic infection, nevertheless, additional experimental research is warranted. The overall count of identified EV proteins of parasitic origin, meeting cut off criteria of two peptides and 1 % FDR, was relatively low.
Collapse
Affiliation(s)
- Dina Rešetar Maslov
- Laboratory of proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova street 55, Zagreb 10000, Croatia.
| | - Ivana Rubić
- Laboratory of proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova street 55, Zagreb 10000, Croatia
| | - Vladimir Farkaš
- Laboratory of proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova street 55, Zagreb 10000, Croatia; Ruđer Bošković Insitute, Division of Molecular Medicine, Laboratory of Molecular Neuropsychiatry, Bijenička cesta 54, Zagreb, Croatia
| | - Josipa Kuleš
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova Street 55, Zagreb 10000, Croatia
| | - Blanka Beer Ljubić
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova street 55, Zagreb 10000, Croatia
| | - Anđelo Beletić
- Laboratory of proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova street 55, Zagreb 10000, Croatia; Genos Ltd, Glycoscience Research Laboratory, Borongajska cesta 83H, Zagreb 10000, Croatia
| | - Marko Samardžija
- Reproduction and Obstetrics, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova street 55, Zagreb 10000, Croatia
| | - Mislav Kovačić
- Department of Biology, University of Osijek, Osijek 31000, Croatia
| | - Gabrijela Jurkić Krsteska
- Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova street 55, Zagreb 10000, Croatia
| | - Vladimir Mrljak
- Laboratory of proteomics, Internal Diseases Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova street 55, Zagreb 10000, Croatia
| |
Collapse
|
4
|
Zanolla I, Trentini M, Tiengo E, Zanotti F, Pusceddu T, Rubini A, Rubini G, Brugnoli F, Licastro D, Debortoli M, Delogu LG, Ferroni L, Lovatti L, Zavan B. Adipose-derived stem cell exosomes act as delivery vehicles of microRNAs in a dog model of chronic hepatitis. Nanotheranostics 2024; 8:298-311. [PMID: 38577321 PMCID: PMC10988209 DOI: 10.7150/ntno.93064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/20/2024] [Indexed: 04/06/2024] Open
Abstract
Exosomes are nanosized extracellular vesicles secreted by all cell types, including canine adipose-derived stem cells (cADSCs). By mediating intercellular communication, exosomes modulate the biology of adjacent and distant cells by transferring their cargo. In the present work after isolation and characterization of exosomes derived from canine adipose tissue, we treated the same canine donors affected by hepatopathies with the previously isolated exosomes. We hypothesize that cADSC-sourced miRNAs are among the factors responsible for a regenerative and anti-inflammatory effect in the treatment of hepatopathies in dogs, providing the clinical veterinary field with an effective and innovative cell-free therapy. Exosomes were isolated and characterized for size, distribution, surface markers, and for their miRNomic cargo by microRNA sequencing. 295 dogs affected with hepatopathies were treated and followed up for 6 months to keep track of their biochemical marker levels. Results confirmed that exosomes derived from cADSCs exhibited an average diameter of 91 nm, and positivity to 8 known exosome markers. The administration of exosomes to dogs affected by liver-associated inflammatory pathologies resulted in the recovery of the animal alongside the normalization of biochemical parameters of kidney function. In conclusion, cADSCs-derived exosomes are a promising therapeutic tool for treating inflammatory disorders in animal companions.
Collapse
Affiliation(s)
- Ilaria Zanolla
- Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Martina Trentini
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Elena Tiengo
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Federica Zanotti
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Tommaso Pusceddu
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | | | - Giuseppe Rubini
- Ultravet Diagnostic, 40017, San Giovanni in Persiceto, Italy
| | | | | | | | - Lucia Gemma Delogu
- Department of Biomedical Sciences, University of Padua, 35122, Padua, Italy
| | - Letizia Ferroni
- Department of Biomedical Sciences, University of Padua, 35122, Padua, Italy
| | - Luca Lovatti
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Barbara Zavan
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| |
Collapse
|
5
|
Xiong Y, Lou P, Xu C, Han B, Liu J, Gao J. Emerging role of extracellular vesicles in veterinary practice: novel opportunities and potential challenges. Front Vet Sci 2024; 11:1335107. [PMID: 38332755 PMCID: PMC10850357 DOI: 10.3389/fvets.2024.1335107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/12/2024] [Indexed: 02/10/2024] Open
Abstract
Extracellular vesicles are nanoscale vesicles that transport signals between cells, mediating both physiological and pathological processes. EVs facilitate conserved intercellular communication. By transferring bioactive molecules between cells, EVs coordinate systemic responses, regulating homeostasis, immunity, and disease progression. Given their biological importance and involvement in pathogenesis, EVs show promise as biomarkers for veterinary diagnosis, and candidates for vaccine production, and treatment agents. Additionally, different treatment or engineering methods could be used to boost the capability of extracellular vesicles. Despite the emerging veterinary interest, EV research has been predominantly human-based. Critical knowledge gaps remain regarding isolation protocols, cargo loading mechanisms, in vivo biodistribution, and species-specific functions. Standardized methods for veterinary EV characterization and validation are lacking. Regulatory uncertainties impede veterinary clinical translation. Advances in fundamental EV biology and technology are needed to propel the veterinary field forward. This review introduces EVs from a veterinary perspective by introducing the latest studies, highlighting their potential while analyzing challenges to motivate expanded veterinary investigation and translation.
Collapse
Affiliation(s)
- Yindi Xiong
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Peng Lou
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Chuang Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingping Liu
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Koprivec S, Majdič G. Extracellular Vesicles in Domestic Animals: Cellular Communication in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1450:39-57. [PMID: 37421538 DOI: 10.1007/5584_2023_779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
Apoptotic and healthy cells of domestic animals release membrane-enclosed particles from their plasma membrane. These special structures, called extracellular vesicles, play an important role in intercellular communication. In the past, it was believed that their function was mainly to dispose unwanted cell contents and to help maintain cell homeostasis. However, we now know that they have important roles in health and disease and have diagnostic value as well as great potential for therapy in veterinary medicine. Extracellular vesicles facilitate cellular exchanges by delivering functional cargo molecules to nearby or distant tissues. They are produced by various cell types and are found in all body fluids. Their cargo reflects the state of the releasing parent cell, and despite their small size, this cargo is extraordinarily complex. Numerous different types of molecules contained in vesicles make them an extremely promising tool in the field of regenerative veterinary medicine. To further increase research interest and discover their full potential, some of the basic biological mechanisms behind their function need to be better understood. Only then will we be able to maximize the clinical relevance for targeted diagnostic and therapeutic purposes in various domestic animal species.
Collapse
Affiliation(s)
- Saša Koprivec
- Veterinary Faculty, Institute of Preclinical Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Majdič
- Veterinary Faculty, Institute of Preclinical Sciences, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
7
|
Moccia V, Centelleghe C, Giusti I, Peruffo A, Dolo V, Mazzariol S, Zappulli V. Isolation and Characterization of Cetacean Cell-Derived Extracellular Vesicles. Animals (Basel) 2023; 13:3304. [PMID: 37958059 PMCID: PMC10650552 DOI: 10.3390/ani13213304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/29/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Cetaceans are of scientific interest because they are good candidates as environmental bioindicators. However, in vivo research is arduous and in vitro studies represent a rarely used valid alternative. Extracellular vesicles (EVs) are membrane-bound structures playing roles in cell-to-cell communication. Despite being a promising investigative tool in different fields of science, EVs have been poorly studied in cetaceans. To fill this gap, we describe the preliminary characterization of EVs isolated from a bottlenose dolphin and a Cuvier's beaked whale cell line. EVs have been isolated with ultracentrifugation (UC) or size exclusion chromatography (SEC) and characterized with nanoparticle tracking analysis (NTA), Western blotting (WB), and scanning transmission electron microscopy (STEM). UC and SEC allowed the isolation of mainly small EVs (<200 nm). A higher number of particles were isolated through UC compared to SEC from both cell lines. At WB, all EVs expressed the EV-markers CD9 and integrin-β. Only EVs isolated with UC were positive for TSG101. In conclusion, we isolated for the first time EVs from a bottlenose dolphin and a Cuvier's beaked whale cell line using two different techniques. Further studies on cell-derived EVs will be useful to deepen our knowledge on cetacean pathophysiology and health status assessment.
Collapse
Affiliation(s)
- Valentina Moccia
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (V.M.); (A.P.); (S.M.); (V.Z.)
| | - Cinzia Centelleghe
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (V.M.); (A.P.); (S.M.); (V.Z.)
| | - Ilaria Giusti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.G.); (V.D.)
| | - Antonella Peruffo
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (V.M.); (A.P.); (S.M.); (V.Z.)
| | - Vincenza Dolo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.G.); (V.D.)
| | - Sandro Mazzariol
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (V.M.); (A.P.); (S.M.); (V.Z.)
| | - Valentina Zappulli
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (V.M.); (A.P.); (S.M.); (V.Z.)
| |
Collapse
|