1
|
Satsook P, Jitviriyanon S, Khongpradit A, Chungopast S, Kaewtapee C, Homwong N. Effects of dietary protease supplementation on in vitro soybean meal protein, dry matter digestibility, and productive performance in starter-to-finisher pigs. Vet World 2024; 17:2185-2192. [PMID: 39507778 PMCID: PMC11536743 DOI: 10.14202/vetworld.2024.2185-2192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/30/2024] [Indexed: 11/08/2024] Open
Abstract
Background and Aim Pig industries are currently facing a crisis in terms of protein and energy costs. Proteases were used to increase protein digestibility and metabolizable energy (ME) in diets. This study evaluated the effects of protease supplementation on in vitro protein digestibility and productive performance in starter-to-finisher pigs. Materials and Methods A total of 691 starter pigs were randomly allocated into three dietary treatments using a randomized complete block design. Diets were provided in three phases according to body weight (BW): Starter, grower, and finisher phases. Each phase was fed for 30, 60, and 24 days of treatment diets as T1: basal diet and T2 and T3: the basal diet supplemented with 240 ppm protease reduced by 50 kcal/kg ME plus 1% crude protein (CP) and by 100 kcal/kg ME plus 2% CP, respectively. Protease and in vitro protein digestibility were measured. BW and feed intake were recorded to calculate the average daily gain (ADG), average daily feed intake (ADFI), feed-to-gain (F:G), and gain-to-feed (G:F) ratios. Results There were no significant differences (p > 0.05) in the percentage of in vitro protein digestibility between the groups with and without protease supplementation. In the finisher phase, T2 had lower (p < 0.05) ADFI and F:G than T1 and T3. Overall, T3 had lower (p < 0.05) ADG, ADFI, and F:G than T1 and T2. Conclusion Protease supplementation significantly affects protein digestibility. Supplementing basal diets with 240 ppm protease reduced ME by 50 kcal/kg and CP by 1% without affecting ADG, ADFI, F:G, and G:F ratios for starter-to-finisher pigs.
Collapse
Affiliation(s)
- Phubet Satsook
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, 73140 Thailand
- National Swine Research and Training Center, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
| | - Surapan Jitviriyanon
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, 73140 Thailand
- National Swine Research and Training Center, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
| | - Anchalee Khongpradit
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, 73140 Thailand
| | - Sirinapa Chungopast
- Department of Soil Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, 73140 Thailand
| | - Chanwit Kaewtapee
- Department of Animal Science, Faculty of Agriculture, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatuchak, Bangkok, 10900 Thailand
| | - Nitipong Homwong
- Department of Animal Science, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, 73140 Thailand
- National Swine Research and Training Center, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
| |
Collapse
|
2
|
Vissamsetti N, Simon-Collins M, Lin S, Bandyopadhyay S, Kuriyan R, Sybesma W, Tomé D. Local Sources of Protein in Low- and Middle-Income Countries: How to Improve the Protein Quality? Curr Dev Nutr 2024; 8:102049. [PMID: 38476722 PMCID: PMC10926142 DOI: 10.1016/j.cdnut.2023.102049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 11/18/2023] [Accepted: 11/26/2023] [Indexed: 03/14/2024] Open
Abstract
Protein inadequacy is a major contributor to nutritional deficiencies and adverse health outcomes of populations in low- and middle-income countries (LMICs). People in LMICs often consume a diet predominantly based on staple crops, such as cereals or starches, and derive most of their daily protein intakes from these sources. However, plant-based sources of protein often contain low levels of indispensable amino acids (IAAs). Inadequate intake of IAA in comparison with daily requirements is a limiting factor that results in protein deficiency, consequently in the long-term stunting and wasting. In addition, plant-based sources contain factors such as antinutrients that can diminish protein digestion and absorption. This review describes factors that affect protein quality, reviews dietary patterns of populations in LMICs and discusses traditional and novel small- and large-scale techniques that can improve the quality of plant protein sources for enhanced protein bioavailability and digestibility as an approach to tackle malnutrition in LMICs. The more accessible small-scale food-processing techniques that can be implemented at home in LMICs include soaking, cooking, and germination, whereas many large-scale techniques must be implemented on an industrial level such as autoclaving and extrusion. Limitations and considerations to implement those techniques locally in LMICs are discussed. For instance, at-home processing techniques can cause loss of nutrients and contamination, whereas limitations with larger scale techniques include high energy requirements, costs, and safety considerations. This review suggests that combining these small- and large-scale approaches could improve the quality of local sources of proteins, and thereby address adverse health outcomes, particularly in vulnerable population groups such as children, adolescents, elderly, and pregnant and lactating women.
Collapse
Affiliation(s)
- Nitya Vissamsetti
- Department of Biochemistry and Molecular Biology and Center for Physics of Evolving Systems, University of Chicago, Chicago, IL, United States
| | - Mackenzie Simon-Collins
- Division of Reproductive Sciences and Women’s Health Research, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sheryl Lin
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Sulagna Bandyopadhyay
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India
| | - Rebecca Kuriyan
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India
| | | | - Daniel Tomé
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| |
Collapse
|
3
|
Zhang J, Zhou C, Zou H, Li B, Yu B, He J, Zheng P, Mao X, Yan H, Luo J, Luo Y, Chen J, Yu J. Effects of Protease in Soybean Meal-Reduced Diets on Growth Performance, Nutrient Digestibility, and Intestinal Health of Weaned Piglets. Animals (Basel) 2023; 14:101. [PMID: 38200832 PMCID: PMC10778164 DOI: 10.3390/ani14010101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/23/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
This experiment was conducted in weaned piglets to determine the effects of exogenous protease to low soybean meal (SBM) diets on growth performance, diarrhea rate, nutrient digestibility, and intestinal morphology. Seventy-two Duroc × Landrace × Yorkshire weaned barrows (21-day-old, 5.88 ± 0.95 kg) were randomly divided into four treatments with six replicates in each following a 2 × 2 factorial arrangement of SBM levels (0 to 14 d, 9%, 7.5%; 15 to 42 d, 20%, 18.5%) and protease (0 or 150 mg/kg) for a 42-day trial. Fecal samples were collected on days 11 to 14 and 38 to 42 of the experiment, and serum, intestinal tissue, and chyme samples were taken at the end of the experiments. Adding protease in low SBM diets had a significant increase in ADG (p < 0.05) and a decrease in F/G (p < 0.05). Protease significantly reduced the diarrhea rate (p < 0.05). Low SBM level decreased the apparent total tract digestibility (ATTD) of crude protein (CP) and ash (p < 0.05) but increased the ATTD of dry matter (DM), ash, organic matter (OM), and CP after the addition of protease (p < 0.05). The apparent ileal digestibility (AID) of aspartic acid (Asp), threonine (Thr), serine (Ser), alanine (Ala), lysine (Lys), and total amino acids (AAs) were significantly increased by protease supplementation (p < 0.05). Both the SBM-reduced and protease-added diets lead to lower albumin (ALB), albumin/globulin (A/G), and urea nitrogen (UREA) (p < 0.05), but greater globulin (GLOB) with low SBM diets (p < 0.05). The SBM-reduced and protease-added diets decreased the duodenum pH, respectively (p < 0.05). The protease increased the villus:crypt (V:C) in the duodenum and ileum, and ileal villus length (p < 0.05). In conclusion, the dietary supplementation of 150 mg/kg protease improved the intestinal health and performance of the weaned piglets and reversed the negative effect of a 1.5% SBM reduction in nutrient utilization, intestinal pH, and intestinal morphological parameters of weaned piglets.
Collapse
Affiliation(s)
- Junhong Zhang
- Key Laboratory for Animal Disease-Resistance Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.Z.); (H.Z.); (B.Y.); (J.H.); (P.Z.); (X.M.); (H.Y.); (J.L.); (Y.L.)
| | - Chunxiang Zhou
- Medical School, Huanghe Science and Technology University, Zhengzhou 450009, China;
| | - Honglei Zou
- Key Laboratory for Animal Disease-Resistance Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.Z.); (H.Z.); (B.Y.); (J.H.); (P.Z.); (X.M.); (H.Y.); (J.L.); (Y.L.)
| | - Bin Li
- Sichuan Tequ Agriculture and Animal Husbandry Technology Group Co., Ltd., Chengdu 610207, China;
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.Z.); (H.Z.); (B.Y.); (J.H.); (P.Z.); (X.M.); (H.Y.); (J.L.); (Y.L.)
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.Z.); (H.Z.); (B.Y.); (J.H.); (P.Z.); (X.M.); (H.Y.); (J.L.); (Y.L.)
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.Z.); (H.Z.); (B.Y.); (J.H.); (P.Z.); (X.M.); (H.Y.); (J.L.); (Y.L.)
| | - Xiangbing Mao
- Key Laboratory for Animal Disease-Resistance Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.Z.); (H.Z.); (B.Y.); (J.H.); (P.Z.); (X.M.); (H.Y.); (J.L.); (Y.L.)
| | - Hui Yan
- Key Laboratory for Animal Disease-Resistance Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.Z.); (H.Z.); (B.Y.); (J.H.); (P.Z.); (X.M.); (H.Y.); (J.L.); (Y.L.)
| | - Junqiu Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.Z.); (H.Z.); (B.Y.); (J.H.); (P.Z.); (X.M.); (H.Y.); (J.L.); (Y.L.)
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.Z.); (H.Z.); (B.Y.); (J.H.); (P.Z.); (X.M.); (H.Y.); (J.L.); (Y.L.)
| | - Jinyong Chen
- Medical School, Huanghe Science and Technology University, Zhengzhou 450009, China;
| | - Jie Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (J.Z.); (H.Z.); (B.Y.); (J.H.); (P.Z.); (X.M.); (H.Y.); (J.L.); (Y.L.)
- Sichuan Tequ Agriculture and Animal Husbandry Technology Group Co., Ltd., Chengdu 610207, China;
| |
Collapse
|
4
|
Szabó C, Kachungwa Lugata J, Ortega ADSV. Gut Health and Influencing Factors in Pigs. Animals (Basel) 2023; 13:ani13081350. [PMID: 37106913 PMCID: PMC10135089 DOI: 10.3390/ani13081350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The gastrointestinal tract (GIT) is a complex, dynamic, and critical part of the body, which plays an important role in the digestion and absorption of ingested nutrients and excreting waste products of digestion. In addition, GIT also plays a vital role in preventing the entry of harmful substances and potential pathogens into the bloodstream. The gastrointestinal tract hosts a significant number of microbes, which throughout their metabolites, directly interact with the hosts. In modern intensive animal farming, many factors can disrupt GIT functions. As dietary nutrients and biologically active substances play important roles in maintaining homeostasis and eubiosis in the GIT, this review aims to summarize the current status of our knowledge on the most important areas.
Collapse
Affiliation(s)
- Csaba Szabó
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary
| | - James Kachungwa Lugata
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary
- Doctoral School of Animal Science, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary
| | - Arth David Sol Valmoria Ortega
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary
- Doctoral School of Animal Science, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary
| |
Collapse
|