1
|
Qi Y, Wang C, Lang H, Wang Y, Wang X, Zheng H, Lu Y. Liposome-based RNAi delivery in honeybee for inhibiting parasite Nosema ceranae. Synth Syst Biotechnol 2024; 9:853-860. [PMID: 39139857 PMCID: PMC11320372 DOI: 10.1016/j.synbio.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/14/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
Nosema ceranae, a parasite that parasitizes and reproduces in the gut of honeybees, has become a serious threat to the global apiculture industry. RNA interference (RNAi) technology can be used to inhibit N. ceranae growth by targeting silencing the thioredoxin reductase (TrxR) in N. ceranae. However, suitable carriers are one of the reasons limiting the application of RNAi due to the easy degradation of dsRNA in honeybees. As a vesicle composed of a lipid bilayer, liposomes are a good carrier for nucleic acid delivery, but studies in honeybees are lacking. In this study, liposomes were used for double-stranded RNA (dsRNA) dsTrxR delivery triggering RNAi to inhibit the N. ceranae growth in honeybees. Compared to naked dsTrxR, liposome-dsTrxR reduced N. ceranae numbers in the midgut and partially restored midgut morphology without affecting bee survival and gut microbial composition. The results of this study confirmed that liposomes could effectively protect dsRNA from entering the honeybee gut and provide a reference for using RNAi technology to suppress honeybee pests and diseases.
Collapse
Affiliation(s)
- Yue Qi
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Chen Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Haoyu Lang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yueyi Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| | - Xiaofei Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yuan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Hassona NM, El-Wahed AAA. Heavy Metal Concentrations of Beeswax (Apis mellifera L.) at Different Ages. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:26. [PMID: 37598395 PMCID: PMC10440263 DOI: 10.1007/s00128-023-03779-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/28/2023] [Indexed: 08/22/2023]
Abstract
Beeswax is a naturally occurring product that worker bees produce. Beeswax is used in a variety of industries and pharmaceuticals. Humans utilize it extensively in cosmetics, medicinal formulations, and food manufacturing. Beeswax is an essential component of advanced contemporary beekeeping. Beekeepers, in particular, utilize significant amounts of beeswax to make beeswax comb foundation. In its natural condition, beeswax is white, but it becomes yellow then dark in color when it comes into touch with honey and pollen. The ongoing use of wax comb in bee activities (such as brood rearing, storage honey and bee bread), combined with environmental factors such as heavy metal and pesticide residues, resulted in a black color. Because of heavy metals can accumulate in wax for decades, beeswax can be a helpful tool for gathering data on hazardous contaminants in the environment. Because of their lipid-based chemical composition, beeswax combs act as a sink for numerous ambient pollutants as well as poisons when in the hive. The current study aims to measure nine heavy metals and important elements, including iron (Fe), chromium (Cr), zinc (Zn), copper (Cu), nickel (Ni), manganese (Mn), lead (Pb), cadmium (Cd), and cobalt (Co) in beeswax collected in the Behaira governorate region of Egypt between 2018 and 2022. Sample collection was conducted each year in triplicate. The samples were analyzed using an atomic absorption spectrophotometer. The quantity of metals in beeswax at different ages differed significantly. Depending on the wax age, Fe has the highest concentration in the range of 2.068 to 5.041 ppm, while Cd has the lowest ratio at 0.024 to 0.054 ppm from the first to fifth years old of comb age. The findings showed that as beeswax combs aged, the concentration of heavy metals rose. According to the study, it should gradually recycle beeswax combs each year and also adding new foundations.
Collapse
Affiliation(s)
- Nadia M Hassona
- Economic Entomology & Apiculture - Plant Protection Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Aida A Abd El-Wahed
- Department of Bee Research, Plant Protection Research Institute, Agricultural Research Centre, Giza, 12627, Egypt.
| |
Collapse
|
3
|
Mukarram M, Ali J, Dadkhah-Aghdash H, Kurjak D, Kačík F, Ďurkovič J. Chitosan-induced biotic stress tolerance and crosstalk with phytohormones, antioxidants, and other signalling molecules. FRONTIERS IN PLANT SCIENCE 2023; 14:1217822. [PMID: 37538057 PMCID: PMC10394624 DOI: 10.3389/fpls.2023.1217822] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023]
Abstract
Several polysaccharides augment plant growth and productivity and galvanise defence against pathogens. Such elicitors have ecological superiority over traditional growth regulators, considering their amplified biocompatibility, biodegradability, bioactivity, non-toxicity, ubiquity, and inexpensiveness. Chitosan is a chitin-derived polysaccharide that has recently been spotlighted among plant scientists. Chitosan supports plant growth and development and protects against microbial entities such as fungi, bacteria, viruses, nematodes, and insects. In this review, we discuss the current knowledge of chitosan's antimicrobial and insecticidal potential with recent updates. These effects are further explored with the possibilities of chitosan's active correspondence with phytohormones such as jasmonic acid (JA), salicylic acid (SA), indole acetic acid (IAA), abscisic acid (ABA), and gibberellic acid (GA). The stress-induced redox shift in cellular organelles could be substantiated by the intricate participation of chitosan with reactive oxygen species (ROS) and antioxidant metabolism, including hydrogen peroxide (H2O2), superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). Furthermore, we propose how chitosan could be intertwined with cellular signalling through Ca2+, ROS, nitric oxide (NO), transcription factors (TFs), and defensive gene activation.
Collapse
Affiliation(s)
- Mohammad Mukarram
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Jamin Ali
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Newcastle-under-Lyme, Staffordshire, United Kingdom
| | - Hamed Dadkhah-Aghdash
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Daniel Kurjak
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - František Kačík
- Department of Chemistry and Chemical Technologies, Faculty of Wood Sciences and Technology, Technical University in Zvolen, Zvolen, Slovakia
| | - Jaroslav Ďurkovič
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| |
Collapse
|
4
|
Zulkhairi Amin FA, Shafiq Cheng MZ, Sabri S, Ismail N, Chan KW, Mohd Esa N, Mohd Lila MA, Nur-Fazila SH, Khalifa SAM, El-Seedi HR, Zawawi N. In Vivo Toxicity Assessment of the Probiotic Bacillus amyloliquefaciens HTI-19 Isolated from Stingless Bee ( Heterotrigona itama) Honey. Nutrients 2023; 15:nu15102390. [PMID: 37242273 DOI: 10.3390/nu15102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
This study evaluated the acute and sub-acute toxicity of B. amyloliquefaciens HTI-19 (isolated from stingless bee honey) in female Sprague Dawley rats. In an acute toxicity study, the rats received a low dosage (1 × 109 CFU·mL-1), medium dosage (3 × 109 CFU·mL-1), or high dosage (1 × 1010 CFU·mL-1) of B. amyloliquefaciens HTI-19 daily orally by syringe-feeding for 14 days. For the subacute toxicity study, rats received a low dosage (1 × 109 CFU·mL-1) or a high dosage (1 × 1010 CFU·mL-1) for 28 days. The probiotic feeding in acute and sub-acute toxicity studies showed no mortality or significant abnormalities in rats throughout the experimental period. In week 2 of the acute study, the body weight of the rats showed a significant increase (p < 0.05) compared to the control. By gross and microscopic examination of organs, no evidently significant changes were observed in the morphology of organs. Serum biochemical tests and blood hematology tests also revealed no treatment-related changes. Overall, these data indicated that oral administration of B. amyloliquefaciens HTI-19 up to 1 × 109 CFU·mL-1 for 28 days can be considered safe.
Collapse
Affiliation(s)
- Fatin Aina Zulkhairi Amin
- Natural Medicines and Product Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohamad Zulhafiz Shafiq Cheng
- Natural Medicines and Product Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Suriana Sabri
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Norsharina Ismail
- Natural Medicines and Product Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Kim Wei Chan
- Natural Medicines and Product Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Norhaizan Mohd Esa
- Natural Medicines and Product Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Azmi Mohd Lila
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Saulol Hamid Nur-Fazila
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Shaden A M Khalifa
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Hesham R El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu Education Department, Jiangsu University, Zhenjiang 212013, China
| | - Norhasnida Zawawi
- Functional Carbohydrate and Protein Laboratory, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Laboratory of Halal Science, Halal Products Research Institute, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
5
|
Dequenne I, Philippart de Foy JM, Cani PD. Developing Strategies to Help Bee Colony Resilience in Changing Environments. Animals (Basel) 2022; 12:ani12233396. [PMID: 36496917 PMCID: PMC9737243 DOI: 10.3390/ani12233396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/16/2022] [Accepted: 11/30/2022] [Indexed: 12/10/2022] Open
Abstract
Climate change, loss of plant biodiversity, burdens caused by new pathogens, predators, and toxins due to human disturbance and activity are significant causes of the loss of bee colonies and wild bees. The aim of this review is to highlight some possible strategies that could help develop bee resilience in facing their changing environments. Scientists underline the importance of the links between nutrition, microbiota, and immune and neuroendocrine stress resistance of bees. Nutrition with special care for plant-derived molecules may play a major role in bee colony health. Studies have highlighted the importance of pollen, essential oils, plant resins, and leaves or fungi as sources of fundamental nutrients for the development and longevity of a honeybee colony. The microbiota is also considered as a key factor in bee physiology and a cornerstone between nutrition, metabolism, growth, health, and pathogen resistance. Another stressor is the varroa mite parasite. This parasite is a major concern for beekeepers and needs specific strategies to reduce its severe impact on honeybees. Here we discuss how helping bees to thrive, especially through changing environments, is of great concern for beekeepers and scientists.
Collapse
Affiliation(s)
- Isabelle Dequenne
- J-M Philippart de Foy & I Dequenne Consultation, Avenue Orban, 127, 1150 Brussels, Belgium
| | | | - Patrice D. Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
- WELBIO Department, WEL Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Avenue Pasteur, 6, 1300 Wavre, Belgium
- Correspondence:
| |
Collapse
|