1
|
Liang J, Liu S, Zhang R, Chang J, Lv L, Nabi M, Zhang G, Zhang P. Yeast culture enhances long-term fermentation of corn straw by ruminal microbes for volatile fatty acid production: Performance and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122736. [PMID: 39362162 DOI: 10.1016/j.jenvman.2024.122736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Ruminal microbes can efficiently ferment biomass waste to produce volatile fatty acids (VFAs). However, keeping long-term efficient VFA production efficiency has become a bottleneck. In this study, yeast culture (YC) was used to enhance the VFA production in long-term fermentation. Results showed that YC group improved the volatile solid removal and VFA concentration to 47.8% and 7.82 g/L, respectively, 18.6% and 16.1% higher than the control, mainly enhancing the acetic, propionic, and butyric acid production. YC addition reduced the bacterial diversity, changed the bacterial composition, and improved interactions among bacteria. The regulation mechanism of YC was to increase the abundance and activity of hydrolytic and acidogenic bacteria such as Prevotella and Treponema, improve bacterial interactions, and further promote expression of functional genes. Ultimately, a long-term efficient ruminal fermentation of corn straw into VFAs was achieved.
Collapse
Affiliation(s)
- Jinsong Liang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Shiqi Liu
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Ru Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Jianning Chang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Longyi Lv
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Mohammad Nabi
- Environmental Science and Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou, 515063, China
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Panyue Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
2
|
Monteiro HF, Figueiredo CC, Mion B, Santos JEP, Bisinotto RS, Peñagaricano F, Ribeiro ES, Marinho MN, Zimpel R, da Silva AC, Oyebade A, Lobo RR, Coelho WM, Peixoto PMG, Ugarte Marin MB, Umaña-Sedó SG, Rojas TDG, Elvir-Hernandez M, Schenkel FS, Weimer BC, Brown CT, Kebreab E, Lima FS. An artificial intelligence approach of feature engineering and ensemble methods depicts the rumen microbiome contribution to feed efficiency in dairy cows. Anim Microbiome 2024; 6:5. [PMID: 38321581 PMCID: PMC10845535 DOI: 10.1186/s42523-024-00289-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/17/2024] [Indexed: 02/08/2024] Open
Abstract
Genetic selection has remarkably helped U.S. dairy farms to decrease their carbon footprint by more than doubling milk production per cow over time. Despite the environmental and economic benefits of improved feed and milk production efficiency, there is a critical need to explore phenotypical variance for feed utilization to advance the long-term sustainability of dairy farms. Feed is a major expense in dairy operations, and their enteric fermentation is a major source of greenhouse gases in agriculture. The challenges to expanding the phenotypic database, especially for feed efficiency predictions, and the lack of understanding of its drivers limit its utilization. Herein, we leveraged an artificial intelligence approach with feature engineering and ensemble methods to explore the predictive power of the rumen microbiome for feed and milk production efficiency traits, as rumen microbes play a central role in physiological responses in dairy cows. The novel ensemble method allowed to further identify key microbes linked to the efficiency measures. We used a population of 454 genotyped Holstein cows in the U.S. and Canada with individually measured feed and milk production efficiency phenotypes. The study underscored that the rumen microbiome is a major driver of residual feed intake (RFI), the most robust feed efficiency measure evaluated in the study, accounting for 36% of its variation. Further analyses showed that several alpha-diversity metrics were lower in more feed-efficient cows. For RFI, [Ruminococcus] gauvreauii group was the only genus positively associated with an improved feed efficiency status while seven other taxa were associated with inefficiency. The study also highlights that the rumen microbiome is pivotal for the unexplained variance in milk fat and protein production efficiency. Estimation of the carbon footprint of these cows shows that selection for better RFI could reduce up to 5 kg of diet consumed per cow daily, potentially reducing up to 37.5% of CH4. These findings shed light that the integration of artificial intelligence approaches, microbiology, and ruminant nutrition can be a path to further advance our understanding of the rumen microbiome on nutrient requirements and lactation performance of dairy cows to support the long-term sustainability of the dairy community.
Collapse
Affiliation(s)
- Hugo F Monteiro
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, 95616, Davis, CA, USA
| | - Caio C Figueiredo
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, WA, USA
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL, USA
| | - Bruna Mion
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | | | - Rafael S Bisinotto
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL, USA
| | | | - Eduardo S Ribeiro
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Mariana N Marinho
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Roney Zimpel
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | | | - Adeoye Oyebade
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Richard R Lobo
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Wilson M Coelho
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, 95616, Davis, CA, USA
| | - Phillip M G Peixoto
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL, USA
| | - Maria B Ugarte Marin
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL, USA
| | - Sebastian G Umaña-Sedó
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL, USA
| | - Tomás D G Rojas
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL, USA
| | | | - Flávio S Schenkel
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Bart C Weimer
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, 95616, Davis, CA, USA
| | - C Titus Brown
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, 95616, Davis, CA, USA
| | - Ermias Kebreab
- Department of Animal Sciences, College of Agriculture and Life Sciences, University of California, 95616, Davis, CA, USA
| | - Fábio S Lima
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, 95616, Davis, CA, USA.
| |
Collapse
|
3
|
Wang H, Su M, Wang C, Li D, Li Q, Liu Z, Qi X, Wu Y, Zhao Y, Li T, Ma Y. Yeast culture repairs rumen epithelial injury by regulating microbial communities and metabolites in sheep. Front Microbiol 2023; 14:1305772. [PMID: 38107864 PMCID: PMC10722269 DOI: 10.3389/fmicb.2023.1305772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023] Open
Abstract
This study delves into the impact of yeast culture (YC) on rumen epithelial development, microbiota, and metabolome, with the aim of investigating YC's mechanism in regulating rumen fermentation. Thirty male lambs of Hu sheep with similar age and body weight were selected and randomly divided into three groups with 10 lambs in each group. Lambs were fed a total mixed ration [TMR; rough: concentrate (R:C) ratio ≈ 30:70] to meet their nutritional needs. The experiment adopted completely randomized design (CRD). The control group (CON) was fed the basal diet with high concentrate, to which 20 g/d of YC was added in the low dose YC group (LYC) and 40 g/d of YC in the high dose YC group (HYC). The pretrial period was 14 days, and the experimental trial period was 60 days. At the end of a 60-day trial, ruminal epithelial tissues were collected for histomorphological analysis, and rumen microorganisms were analyzed by 16S rDNA sequencing and rumen metabolites by untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics techniques. The results showed that YC improved rumen papilla development and increased rumen papilla length (p < 0.05), while decreased cuticle thickness (p < 0.05). The 16S rDNA sequencing results showed that YC reduced the relative abundance of Prevotella_1 (p < 0.05), while significantly increased the relative abundance of Ruminococcaceae_UCG-005, uncultured_bacterium_f_Lachnospiraceae, and Ruminococcus_1 genus (p < 0.05). Metabolomics analysis showed that YC changed the abundance of metabolites related to amino acid metabolism, lipid metabolism and vitamin metabolism pathways in the rumen. In summary, YC might maintain rumen health under high-concentrate diet conditions by changing rumen microbiota structure and fermentation patterns, thereby affecting rumen metabolic profiles and repairing rumen epithelial injury.
Collapse
Affiliation(s)
- Huihui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Manchun Su
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
- School of Agriculture and Forestry Technology, Longnan Teachers College, Chengxian, China
| | - Chunhui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Dengpan Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Qiao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Zilong Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Xingcai Qi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Yi Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Yongju Zhao
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Taotao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| |
Collapse
|
4
|
Marlida Y, Harnentis H, Nur YS, Ardani LR. New probiotics ( Lactobacillus plantarum and Saccharomyces cerevisiae) supplemented to fermented rice straw-based rations on digestibility and rumen characteristics in vitro. J Adv Vet Anim Res 2023; 10:96-102. [PMID: 37155537 PMCID: PMC10122949 DOI: 10.5455/javar.2023.j657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 05/10/2023] Open
Abstract
Objective This research was arranged to explore the effect of supplementation of a combination of Lactobacillus plantarum and Saccharomyces cerevisiae as a new probiotic in fermented rice straw-based rations on in vitro digestibility and ruminal characteristics. Materials and Methods A randomized group design with 3 types of treatment and 4 replications as a group was used in this study. A probiotic inoculum containing L. plantarum and S. cerevisiae with 1 × 1010 colony-forming unit (CFU)/ml. Treatments were followed by: P1 = complete rations without probiotics (control), P2 = P1 supplemented 0.5% probiotics, and P3 = P1 supplemented 1% probiotics. Substrate complete rations were based on the fermented rice straw and concentrate (60%:40%). Parameters of digestibility and rumen fermentation products were determined after 48 h of incubation. Results Probiotics supplemented with fermented rice straw-based rations significantly increased (p < 0.05) digestibility and rumen characteristics in vitro. Supplementation with 1% probiotics (P3) produces the highest digestibility compared to other treatments: in-vitro dry matter digestibility (IVDMD) (55%), in-vitro organic matter digestibility (IVOMD) (58.28%), in-vitro crude protein digestibility (IVCPD) (84.42%), in-vitro acid detergent fiber digestibility (IVADFD) (53.99%), in-vitro neutral detergent fiber digestibility (IVNDFD) (58.39%), and in-vitro cellulose digestibility (IVCLD) (67.12%). Rumen pH (6.76-6.80) did not change significantly (p > 0.05) due to supplemented probiotics. Probiotic supplementation in rations significantly (p < 0.05) increased the content of NH3 and total volatile fatty acid (VFA). Supplementation with 1% probiotic (P3) showed the highest concentration of NH3 (26.56 mg/100 ml) and was also followed by the total VFA (115.75 mM) compared to the control (22.59 mg/100 ml and 103.00 mM, respectively). Conclusion Supplementation of 1% probiotics (combination of L. plantarum and S. cerevisiae) containing 1 × 1010 CFU/ml in fermented rice straw-based rations increases nutrient digestibility, that is, IVDMD, IVOMD, IVCPD, IVADFD, IVNDFD, and IVCLD, and also increases rumen fermentation, which is the concentration of NH3 and total VFA.
Collapse
Affiliation(s)
- Yetti Marlida
- Department of Animal Nutrition, Faculty of Animal Science, Andalas University, Padang, Indonesia
| | - Harnentis Harnentis
- Department of Animal Nutrition, Faculty of Animal Science, Andalas University, Padang, Indonesia
| | - Yuliaty Shafan Nur
- Department of Animal Nutrition, Faculty of Animal Science, Andalas University, Padang, Indonesia
| | - Laily Rinda Ardani
- Ph.D. Student (PMDSU Program), Graduate Program Faculty of Animal Science, Andalas University, Padang, Indonesia
| |
Collapse
|